Новые транзисторы SiC MOSFET с трехкратным снижением потерь на переключение

15 октября

телекоммуникацииуправление питаниемуправление двигателемответственные примененияWolfspeed (A Cree Company)статьядискретные полупроводникиMOSFETAC-DCзарядное устройство для электромобиляисточник питания для телекомапреобразователь собственных нужд для метро/локомотива

Эдгар Айербе, Адам Баркли, Джон Муккен (Wolfspeed)

Значение скорости переключения MOSFET в традиционных корпусах ограничено многими факторами. Компания Wolfspeed предлагает для своих MOSFET на базе карбида кремния два новых вида корпусов. Применение компонентов в этих корпусах позволяет уменьшить потери и упростить разработку двадцатикиловаттного активного выпрямителя для станций быстрой зарядки электромобилей.

Прогресс в области широкозонных полупроводниковых материалов позволил создать карбид-кремниевые полевые транзисторы (SiC MOSFET) с повышенной рабочей частотой, обеспечивающие меньшие потери на переключение. Усовершенствованные корпуса с малой паразитной индуктивностью, в которых выпускаются такие транзисторы, позволяют разработчикам в полной мере использовать возможности этих компонентов для увеличения КПД силовых преобразователей и, как следствие, для уменьшения расхода электроэнергии конечным потребителем. Простые и вместе с тем эффективные доработки серийно выпускаемых корпусов дискретных полупроводниковых приборов обеспечивают значительное улучшение эксплуатационных характеристик SiC MOSFET и, в то же время, позволяют отказаться от новых типов корпусов, применение которых непременно сказалось бы на стоимости и удобстве разработки готовых преобразователей.

С появлением новейших SiC MOSFET семейства C3M™ компании Wolfspeed ограничительными факторами для динамических характеристик изделий на базе этих транзисторов стали их корпусная паразитная индуктивность и топология печатной платы. MOSFET семейства C3M способны за десятки наносекунд коммутировать сотни вольт и десятки ампер. Но большое значение индуктивности истока в случае обычного корпуса TO-247-3 (обусловленное как индуктивностью соединительного проводника между кристаллом и выводом истока, так и индуктивностью самого вывода) приводит к возникновению отрицательной обратной связи, ограничивающей достижимое значение di/dt, а также увеличивающей потери на переключение. Как показано на рисунке 1 (верхний ключ), индуктивность истока Q1 (LS1) и, соответственно, падение на ней напряжения оказываются общими для контура управления затвором и силового контура. Во время резкого изменения тока через ключ при переключении это напряжение вычитается из напряжения, формируемого драйвером затвора (VDRV1). Как результат, снижается напряжение «затвор-исток» непосредственно на кристалле MOSFET, что значительно уменьшает скорость переключения, потери же на переключение при этом растут.

Один из путей решения данной проблемы – использование новых вариантов корпусов с дополнительным выводом истока KS (так называемый вывод по схеме Кельвина). Этот вывод соединяется с общим проводом драйвера затвора, как показано на рисунке 1 (нижний ключ Q2). В случае изолированного драйвера (VDRV2) падение напряжения на индуктивности истока не оказывает влияния на контур управления затвором. В результате петля отрицательной обратной связи разрывается, что дает возможность снизить потери на переключение и существенно увеличить его скорость.

Максимальное значение di/dt, обеспечиваемое транзистором в корпусе TO-247-3L, ограничено из-за падения напряжения на суммарной индуктивности истока LS1, которое вычитается из напряжения управления затвором VDRV1. Использование корпуса TO-247-4L с дополнительным кельвиновским выводом истока в сочетании с изолированным драйвером затвора VDRV2 снимает это ограничение и тем самым существенно снижает потери на переключение.

Рис. 1. Условная схема одного плеча моста на MOSFET с верхним ключом (Q1) в корпусе TO-247-3L и нижним ключом (Q2) в корпусе TO-247-4L

Рис. 1. Условная схема одного плеча моста на MOSFET с верхним ключом (Q1) в корпусе TO-247-3L и нижним ключом (Q2) в корпусе TO-247-4L

Wolfspeed разработала новые варианты корпуса SiC MOSFET с отдельным выводом истока по схеме Кельвина; в таблице 1 вы найдете базовые характеристики транзисторов, выпускаемых в этих корпусах. Первый вариант – это корпус TO-263-7 для поверхностного монтажа, специально разработанный для MOSFET, рабочее напряжение которых не превышает 1700 В. Место, занимаемое этим корпусом на плате, на 52% меньше, чем у корпуса D3PAK, в котором обычно выпускаются компоненты на напряжение 1200…1700 В. В новом корпусе предусмотрено пять выводов истока, соединенных параллельно – такое решение значительно снижает индуктивность истока в силовом контуре в сравнении с другими корпусами для поверхностного монтажа. Второй вариант – корпус TO-247-4L для монтажа в отверстия, длина пути утечки «сток – исток» у него составляет 8 мм.

Таблица 1. SiC MOSFET компании Wolfspeed в корпусах с выводом истока, выполненным по схеме Кельвина

Наименование Rds(on), мОм Напряжение, В Корпус
C3M0065090J 65 900 TO-263-7L
C3M0120090J 120 900
C3M0280090J 280 900
C3M0065100J 65 1000
C3M0120100J 120 1000
C3M0075120J 75 1200
C2M1000170J 1000 1700
C3M0010090K* 10 900 TO-247-4L
C3M0065100K 65 1000
C3M0120100K 120 1000
C3M0075120K 75 1200
* – готовится к выпуску.

Результаты измерений: оценка улучшения динамических характеристик

В ходе испытаний (коммутация шунтированной диодом индуктивной нагрузки) подтвердилось улучшение динамических характеристик транзисторов в корпусах новых типов, указанных в таблице 1. На рисунке 2 приведены графики напряжения «сток-исток» и тока стока для кристалла MOSFET (1000 В, 65 мОм) в корпусах TO-263-7L (с включенным по кельвиновской схеме выводом истока) и TO-247-3L (без добавленного вывода истока) в случае коммутации 600 В/40 А нагрузки. Даже для такого, сравнительно небольшого, кристалла MOSFET при наличии в цепи затвора десятиомного резистора время открытия уменьшилось с 72 нс до 27 нс, что соответствует росту скорости переключения в 2,6 раза.

Рис. 2. Изменение напряжения и тока при открытии одинаковых SiC MOSFET в разных корпусах

Рис. 2. Изменение напряжения и тока при открытии одинаковых SiC MOSFET в разных корпусах

Поскольку этот эффект зависит от характеристики di/dt MOSFET, можно предположить, что наибольшее снижение потерь при переключении будет достигнуто для сильноточных MOSFET с большой площадью кристалла и достаточно малым сопротивлением в цепи затвора. Во втором испытании на коммутацию индуктивной нагрузки тестировался кристалл MOSFET с номинальным напряжением 900 В, сопротивлением открытого канала 10 мОм и с управляющим напряжением VGS = -4/+15 В при RG = 5 Ом и VDD = 600 В. Рисунок 3 отражает взаимосвязь динамических потерь и тока стока для транзистора в корпусах – стандартном TO-247-3L (слева) и новом TO-247-4L, с отдельным выводом, включенным по схеме Кельвина (справа). В обоих случаях измеренные значения включают потери на внутреннем, шунтирующем диоде верхнего MOSFET. Графики показывают 3,5-кратное уменьшение потерь на переключение при коммутации тока, близкого к номинальному. SiC MOSFET могут работать и на более высоких частотах в схемах мягкой коммутации или в резонансных схемах, обычно использующихся в DC/DC-преобразователях внебортовых и бортовых быстрых зарядных устройств постоянного тока [2].

Рис. 3. Связь энергии динамических потерь и тока стока для корпусов TO-247-3L и TO-247-4L SiC MOSFET (10 мОм, 900 В)

Рис. 3. Связь энергии динамических потерь и тока стока для корпусов TO-247-3L и TO-247-4L SiC MOSFET (10 мОм, 900 В)

Пример применения: экономичный активный выпрямитель (AFE) мощностью 20 кВт для станций быстрой зарядки электромобилей

Бурное развитие электротранспорта открыло новые возможности для внедрения SiC MOSFET как на автомобилях, так и в сопутствующей инфраструктуре. Полумостовые схемы с жесткой коммутацией используются в DC/DC-преобразователях, тяговых приводах и в активных выпрямителях с ККМ, применяемых в устройствах для заряда. Также SiC MOSFET могут работать на более высоких частотах в схемах с мягкой коммутацией или резонансных схемах, обычно применяющихся в DC/DC-преобразователях быстрых зарядных устройств постоянного тока, как бортовых, так и внебортовых.

Рис. 4. Упрощенная схема силового каскада и выполненный по ней типовой образец активного выпрямителя на 20 кВт на базе MOSFET C3M0065100K

Рис. 4. Упрощенная схема силового каскада и выполненный по ней типовой образец активного выпрямителя на 20 кВт на базе MOSFET C3M0065100K

Таким образом, применение новых типов корпусов с кельвиновской схемой вывода истока обеспечивает заметное уменьшение потерь на переключение при коммутации в жестком режиме. Динамические характеристики, обеспечиваемые конструкцией корпуса, а также такие параметры SiC MOSFET семейства C3M на напряжение 1000 В как малые потери проводимости в рабочем диапазоне температур, малое значение QRR паразитного диода и более высокая линейность изменения выходной емкости позволили разработчикам по новому подойти к некоторым известным простым схемам с двухуровневой топологией. Чтобы продемонстрировать эти достоинства на практике, специалисты Wolfspeed разработали и испытали двухуровневый активный выпрямитель мощностью 20 кВт на основе SiC MOSFET (рисунок 4). Он может использоваться в качестве входного каскада станции быстрой зарядки электромобилей.

В каждом ключе указанного выпрямителя находится по два MOSFET C3M0065100K. Дополнительные антипараллельные диоды отсутствуют. Частота коммутации 48 кГц призвана обеспечить баланс между стоимостью дросселей фаз, КНИ фазового тока и простотой конструкции ЭМИ-фильтра (частота третьей гармоники ниже 150 кГц). Дроссели фаз выполнены на сердечнике AMCC 50 Metglass 2605SA1, имеют индуктивность 400 мкГн и  обмотку из медной фольги. Для управления ключами по методу векторной ШИМ используется микроконтроллер TMS320F28335. Длительность мертвого времени была уменьшена до ~100 нс, чтобы снизить искажения формы сигнала в окрестностях точки перехода фазного напряжения через ноль. Итоговые графики КПД и КНИ, построенные по результатам измерений, приведены на рисунке 5. Эти графики свидетельствуют о том, что разработчикам удалось достичь технических показателей, к которым они стремились.

Рис. 5. Зависимость КПД и КНИ двухуровневого активного выпрямителя на SiC MOSFET от выходной мощности (слева) и сравнение КПД и оценочных значений плотности мощности с характеристиками выпрямителей типа «Vienna» с кремниевыми диодами (справа)

Рис. 5. Зависимость КПД и КНИ двухуровневого активного выпрямителя на SiC MOSFET от выходной мощности (слева) и сравнение КПД и оценочных значений плотности мощности с характеристиками выпрямителей типа «Vienna» с кремниевыми диодами (справа)

По сравнению с популярной трехуровневой топологией выпрямителя типа «Vienna» на основе кремниевых диодов, предложенное решение позволяет уменьшить потери мощности более чем на 30% (экономия электроэнергии), имеет более простую схему и более простое управление, сокращает список комплектующих, а также обеспечивает передачу энергии в обоих направлениях (технология V2G). Более подробную информацию о рассмотренном прототипе выпрямителя и о его сравнении с выпрямителем типа «Vienna» можно найти в [1].

Выводы

Ожидается, что в течение ближайших лет мировой рынок силовых полупроводниковых компонентов, используемых в автомобилестроении, вырастет более чем на 3 миллиарда долларов [3]. В связи с этим ключевым фактором, влияющим на повсеместное распространение электромобилей, становится наличие высокоэффективных быстрых зарядных устройств, как бортовых, так и внебортовых. Новые недорогие корпуса дискретных SiC MOSFET позволят разработчикам увеличить эффективность преобразования этих устройств, их удельную мощность, и, в конечном счете, снизить расход электроэнергии конечным потребителем. Разработанный типовой образец двухуровневого активного выпрямителя доказал, что обладающие превосходными характеристиками SiC MOSFET-транзисторы семейства C3M компании Wolfspeed даже при использовании простых топологии и метода управления обеспечивают 30-процентное снижение потерь мощности.

Литература

  1. A. Barkley, M. Schupbach, B. Agrawal, S. Allen, New 1000V SiC MOSFETs Enable Improved Efficiency, Density, and Cost Tradeoff Space for PFCs, Proceedings of the 32nd Applied Power Electronics Conference and Exposition (APEC 2017), Tampa, FL, USA, March 26-30, 2017.
  2. J. Mookken, Fast Charging EV with the Latest 1kV 3rd Generation SiC MOSFET. Proceedings of the 32nd Applied Power Electronics Conference and Exposition (APEC 2017), Tampa, FL, USA, March 26-30, 2017.
  3. IHS 2017.

                   Перевел Андрей Евстифеев по заказу АО КОМПЭЛ

•••

Наши информационные каналы

О компании WOLFSPEED (A Cree Company)

Компания Wolfspeed, входящая в структуру CREE Inc., является мировым лидером в производстве полупроводниковых кристаллов из карбида кремния (SiC) и приборов на их основе. Полевые транзисторы, диоды и другие полупроводниковые приборы на основе карбида кремния обладают рядом преимуществ по сравнению с аналогичными кремниевыми приборами. Среди них – рабочая температура кристалла до 600°С, высокое быстродействие, радиационная стойкость. В настоящее время Wolfspeed производит высоковольтные SiC ди ...читать далее

Товары
Наименование
C3M0065090J (CREE PWR)
C3M0065090J-TR (CREE PWR)
C3M0120090J (CREE PWR)
C3M0120090J-TR (CREE PWR)
C3M0280090J (CREE PWR)
C3M0280090J-TR (CREE PWR)
C3M0065100J (CREE PWR)
C3M0065100J-TR (CREE PWR)
C3M0120100J (CREE PWR)
C3M0075120J (CREE PWR)
C3M0075120J-TR (CREE PWR)
C2M1000170J (CREE PWR)
C2M1000170J-TR (CREE PWR)
C3M0065100K (CREE PWR)
C3M0120100K (CREE PWR)
C3M0075120K (CREE PWR)
C3M0032120K (CREE PWR)
C3M0032120D (CREE PWR)
C3M0021120K (CREE PWR)
C3M0021120D (CREE PWR)