Бортовые зарядные устройства электромобилей на основе компонентов Infineon

7 декабря 2021

автомобильная электроникауправление питаниемInfineonстатьядискретные полупроводникиMOSFET

Северин Кампль (Infineon)

Достижения компании Infineon в области силовых полупроводниковых приборов на основе кремния и карбида кремния позволяют создавать бортовые зарядные устройства с высокими значениями удельной мощности и КПД, предназначенные для электромобилей и гибридных автомобилей.

Количество автомобилей с электрическим приводом, как классических – с питанием только от аккумуляторных батарей (Battery Electric Vehicles, BEV), так и их гибридных версий, имеющих возможность заряда аккумулятора из сети с помощью встроенных зарядных устройств (Plug-In Hybrid Vehicles, PHEV), увеличивается с каждым годом. Однако, несмотря на многочисленные преимущества данного вида транспорта, популярность таких автомобилей еще невелика. Результаты опроса потенциальных покупателей показывают, что наибольшие опасения, связанные с транспортом на электрической тяге, обусловлены наличием аккумуляторной батареи, а приводимые производителями данные о дальности поездки на одном заряде батареи во многих случаях вызывают скептицизм. Таким образом, состояние рынка электро- и гибридных автомобилей напрямую зависит от уровня надежности и срока службы используемых в них аккумуляторных батарей.

С технической точки зрения, количество циклов «заряд-разряд» любого аккумулятора определяется характеристиками зарядных устройств и используемыми алгоритмами заряда. Однако функции бортовых зарядных устройств современных электромобилей не ограничиваются только зарядом и защитой аккумулятора. Поскольку зарядное устройство подключается к сети, то от формы его потребляемого тока напрямую зависит качество потребления электрической энергии, оцениваемое коэффициентом мощности зарядной системы. Не следует также забывать, что современные электромобили уже давно рассматриваются в качестве резервных источников электропитания, поэтому их бортовые зарядные системы могут обеспечивать и обратную функцию – передачу энергии из аккумулятора внешним потребителям. Для реализации этого силовая часть зарядных устройств должна иметь возможность работы и в режиме инвертора, то есть формировать из постоянного напряжения аккумуляторной батареи переменное напряжение с частотой 50/60 Гц.

В данной статье рассмотрены типовые схемы узлов бортовых зарядных устройств электро- и гибридных автомобилей, а также приведены рекомендации по выбору элементной базы производства компании Infineon, которые могут быть использованы при их разработке.

Мостовой выпрямитель с корректором коэффициента мощности 

Первые варианты узлов выпрямления зарядных устройств для электромобилей строились по схеме, состоящей из каскадно соединенных мостового выпрямителя, преобразующего переменное напряжение в постоянное, и повышающего преобразователя, обеспечивающего требуемый коэффициент мощности (рисунок 1). Для того, чтобы сформировать синусоидальный входной ток, транзисторы и диоды повышающего преобразователя должны переключаться на высокой частоте, а его дроссель работать в безразрывном режиме (Continuous Conduction Mode, CCM). Это приводит к функционированию силовых полупроводниковых компонентов повышающего преобразователя в режиме жестких переключений, что, в свою очередь, ведет к увеличению потерь энергии, возникающих при работе этого каскада. Кроме того, из-за наличия во входном выпрямителе неуправляемых полупроводниковых диодов, пропускающих ток только в одном направлении, данная схема является однонаправленной, поэтому при ее использовании передавать электрическую энергию можно только в одном направлении – из сети в аккумуляторную батарею.

Рис. 1. Схема зарядного устройства на основе мостового выпрямителя и повышающего преобразователя (антипараллельный диод ключа S1 для упрощения не показан)

Рис. 1. Схема зарядного устройства на основе мостового выпрямителя и повышающего преобразователя (антипараллельный диод ключа S1 для упрощения не показан)

Работа повышающего преобразователя в режиме жестких переключений приводит к тому, что его транзисторы и диоды в момент коммутации подвергаются значительным перегрузкам как по напряжению, так и по току, что вынуждает использовать в этом узле полупроводниковые компоненты с повышенной установочной мощностью. Например, в качестве диода D1 лучше всего использовать 650-вольтовые карбид-кремниевые диоды Шоттки пятого поколения (Gen5) семейства CoolSiC, прошедшие сертификацию для использования в автомобильных приложениях.

В качестве ключа S1 можно использовать достаточно большое количество управляемых полупроводниковых приборов, производимых компанией Infineon (рисунок 2). Например, с этой задачей прекрасно справятся специально разработанные для автомобильной техники 650-вольтовые IGBT семейства TRENCHSTOP AUTO 5, обладающие высокой скоростью переключения и малыми динамическими потерями. Среди представителей этого семейства присутствуют как одиночные приборы, так и транзисторы с интегрированным антипараллельным диодом на основе кремниевых или карбид-кремниевых кристаллов. Теоретически в такой схеме можно использовать одиночные IGBT без антипараллельного диода. Однако на практике во время переходных процессов между коллектором и эмиттером этого ключа могут возникать отрицательные напряжения, для защиты от которых параллельно транзистору рекомендуется всегда устанавливать диод.

Рис. 2. Примеры зарядных устройств на основе IGBT с интегрированным карбид-кремниевым диодом (а), на основе одиночного IGBT с внешним диодом (б) и на основе MOSFET семейства CoolMOS CFD7A (в)

Рис. 2. Примеры зарядных устройств на основе IGBT с интегрированным карбид-кремниевым диодом (а), на основе одиночного IGBT с внешним диодом (б) и на основе MOSFET семейства CoolMOS CFD7A (в)

Для приложений, критичных к уровню потерь, вместо IGBT рекомендуется использовать полевые транзисторы с изолированным затвором. В этом случае для бортовых зарядных устройств идеальным выбором являются приборы последнего поколения автомобильных MOSFET – CoolMOS CFD7A. Преимуществами такого решения является более низкий уровень статических потерь из-за резистивного характера поведения проводящего канала MOSFET, в отличие от IGBT, у которых напряжение между коллектором и эмиттером во включенном состоянии практически постоянно. Кроме этого, MOSFET не имеют токовых шлейфов при выключении и быстрее переключаются. Все это, в конечном итоге, приводит к тому, что схемы на основе MOSFET могут иметь более высокий КПД по сравнению с решениями, у которых в качестве ключа S1 выбран IGBT.

Однако не следует забывать, что даже при использовании самых современных полупроводниковых приборов с большой шириной запрещенной зоны (карбида кремния или арсенида галлия) характеристики этой схемы из-за ряда принципиальных ограничений не могут быть высокими. Поэтому сейчас выпрямители зарядных устройств электромобилей обычно строятся по более энергоэффективной безмостовой схеме.

Безмостовой корректор коэффициента мощности

В англоязычной литературе схемы безмостовых корректоров коэффициента мощности называют схемами на основе «тотемного столба» (Totem Pole), из-за того, что на принципиальных схемах транзисторы, образующие элементы этого узла, обычно рисуют один над другим, из-за чего и возникает подобная ассоциация (рисунок 3). В безмостовых схемах все диоды, образующие входной выпрямитель, заменены управляемыми транзисторами, часть из которых переключается на высокой частоте, а часть – на частоте сети. Уменьшение общего количества полупроводниковых элементов в силовой части приводит к уменьшению потерь энергии, поэтому данные схемы имеют больший КПД. Кроме того, если в качестве ключей S1…S4 использовать узлы, способные пропускать ток в обоих направлениях, схема становится двунаправленной и может передавать энергию как из сети в аккумулятор, так и в обратном направлении – из аккумулятора в сеть.

Рис. 3. Схема зарядного устройства на основе безмостового корректора коэффициента мощности

Рис. 3. Схема зарядного устройства на основе безмостового корректора коэффициента мощности

Основным недостатком безмостовых корректоров коэффициента мощности является наличие четырех управляемых ключей, коммутируемых по достаточно сложным алгоритмам. В большинстве случаев ключи S3 и S4 коммутируются синхронно с сетью на низкой частоте, а вот транзисторы S1 и S2 уже должны переключаться на высокой частоте, формируя синусоидальный входной ток (при заряде аккумулятора) или синусоидальное выходное напряжения (при использовании электромобиля в качестве источника электрической энергии).

Как и в схеме с повышающим преобразователем, ключи S1 и S2 работают в режиме жестких переключений, поэтому для них лучше всего использовать полупроводниковые приборы с повышенной установочной мощностью и малым уровнем динамических потерь, например, IGBT семейства TRENCHSTOP H5 или MOSFET семейства CoolSiC. Ключи S3 и S4 фактически выполняют функцию недостающих элементов мостового выпрямителя и переключаются в моменты перехода сетевого напряжения через ноль, поэтому динамические характеристики приборов, используемых в этом узле, обычно не имеют особого значения, а решающую роль имеет лишь величина падения напряжения на ключе, когда он находится во включенном состоянии.

Широкое распространение получили безмостовые корректоры коэффициента мощности, у которых все четыре ключа S1…S4 реализованы на основе IGBT (рисунок 4). В этом случае лучше всего использовать высокоскоростные IGBT семейства TRENCHSTOP 5, однако, более энергоэффективным решением является использование в каскаде, переключающемся на низкой частоте, вместо IGBT полевых транзисторов семейства CoolMOS CFD7A. Эту схему можно также реализовать и на карбид-кремниевых транзисторах семейства CoolSiC, характеристики которых заметно лучше, чем у кремниевых IGBT. Кроме того, MOSFET семейства CoolSiC, рассчитанные на использование в автомобильной технике, имеют максимально допустимое напряжение 1200 В, что позволяет использовать их в системах с напряжением промежуточной шины постоянного тока больше 650 В.

Рис. 4. Примеры зарядных устройств на основе безмостовых ККМ, реализованных на основе IGBT (а), карбид-кремниевых MOSFET (б), IGBT (высокочастотный каскад) и MOSFET семейства CoolMOS CFD7A (низкочастотный каскад) (в)

Рис. 4. Примеры зарядных устройств на основе безмостовых ККМ, реализованных на основе IGBT (а), карбид-кремниевых MOSFET (б), IGBT (высокочастотный каскад) и MOSFET семейства CoolMOS CFD7A (низкочастотный каскад) (в)

Мостовой преобразователь с фазовым управлением

Мостовые преобразователи с фазовым управлением (Phase-Shifted Full-Bridge, PSFB) (рисунок 5) используются в узлах, предназначенных для согласования напряжения промежуточной шины постоянного тока с напряжением аккумуляторной батареи. Эта схема обычно состоит из мостового инвертора на первичной стороне, изолирующего трансформатора и диодного выпрямителя. Поскольку размеры трансформатора напрямую зависят от его рабочей частоты, то реализация этой схемы на основе медленных IGBT не позволяет достичь высоких значений удельной мощности. Из-за этого в инверторах таких узлов используют только MOSFET на основе кремния или карбида кремния, а для уменьшения уровня динамических потерь используют квазирезонансные методы коммутации, для чего в цепь первичной обмотки трансформатора добавляют специальный дроссель.

Рис. 5. Схема мостового преобразователя постоянного напряжения с фазовым управлением

Рис. 5. Схема мостового преобразователя постоянного напряжения с фазовым управлением

Основным преимуществом этой схемы является высокий КПД, достигаемый за счет переключения силовых транзисторов при нулевом напряжении. Это позволяет повторно использовать энергию, накапливаемую в паразитных емкостях MOSFET, что значительно снижает разогрев силовых транзисторов и, соответственно, увеличивает КПД этого узла. Однако из-за специфических особенностей фазового управления мостовой схемы обеспечить режим мягких переключений всех MOSFET во всех режимах работы невозможно. Чаще всего подобные схемы рассчитываются таким образом, чтобы квазирезонанс обеспечивался в диапазоне полной мощности и средних нагрузок. При малой нагрузке ток резонансного дросселя чаще всего оказывается недостаточным для отбора всей энергии, содержащейся в паразитных емкостях MOSFET, и они начинают коммутироваться при ненулевых напряжениях. Высокая вероятность работы преобразователя в режиме жестких переключений приводит к необходимости использовать в его инверторе полупроводниковые приборы с улучшенными динамическими характеристиками. Специалисты компании Infineon рекомендуют использовать в этих узлах либо кремниевые MOSFET с быстрыми диодами, например, семейства CoolMOS CFD7A, либо карбид-кремниевые MOSFET семейства CoolSiC. При выборе приборов семейства CoolSiC следует обращать внимание на возможность их применения в автомобильной технике, являющейся необходимым условием их надежной работы в течение длительного времени.

Еще одним преимуществом мостового преобразователя является более простое управление силовой частью по сравнению, например, с LLC-преобразователями. В этой схеме регулировка выходного напряжения (тока) обеспечивается только изменением фазы переключения транзисторов одного полумостового каскада инвертора по отношению к фазе переключения другого. При этом частота переключения и коэффициент заполнения импульсов управления всеми транзисторами остаются неизменными. Более того, мостовая схема с фазовым управлением может обеспечить регулировку коэффициента передачи в более широких пределах, чем LLC-преобразователи.

На вторичной стороне мостового преобразователя необходимо преобразовать переменное напряжение, поступающее с вторичной обмотки трансформатора, в постоянное. Реализовать эту функцию можно, например, с помощью мостового выпрямителя, как показано на рисунке 5, или с помощью двухполупериодной схемы с выводом средней точки трансформатора.

В качестве силовых ключей на вторичной стороне можно использовать неуправляемые полупроводниковые диоды или, как показано на рисунке 6, MOSFET. В последнем случае следует предусмотреть дополнительные каналы управления транзисторами вторичной стороны, что требует некоторого усложнения схемы управления. Однако при использовании технологии синхронного выпрямления КПД преобразователя будет выше за счет уменьшения величины статических потерь, а сама схема станет двунаправленной и сможет передавать энергию как из промежуточной шины постоянного напряжения в аккумулятор, так и в обратном направлении.

Рис. 6. Схема двунаправленного мостового преобразователя постоянного напряжения с фазовым управлением

Рис. 6. Схема двунаправленного мостового преобразователя постоянного напряжения с фазовым управлением

LLC-преобразователь

Преобразователи на основе LLC-схем используются для тех же задач, что и рассмотренные выше мостовые преобразователи с фазовым сдвигом – согласования напряжения промежуточной шины постоянного напряжения с напряжением аккумуляторной батареи и электрической изоляции бортовой сети электромобиля от первичной системы электроснабжения. Однако, в отличие от мостовых схем, в LLC-преобразователях используются методы резонансного преобразования электрической энергии, поэтому их КПД близок к максимально достижимым при данном уровне технологий значениям.

LLC-преобразователи могут быть построены по полумостовым или мостовым схемам, однако в зарядных устройствах электромобилей чаще всего используются только мостовые версии этого узла (рисунок 7). Основным отличием полумостового варианта от мостового является в два раза меньший ток первичной обмотки трансформатора за счет в два раза большего напряжения, формируемого на ней инвертором. Это позволяет упростить конструкцию силового трансформатора и более эффективно использовать габаритную мощность его магнитопровода. Основным недостатком мостовой версии LLC-схемы является большее количество силовых полупроводниковых приборов, что приводит к усложнению схемы управления и, при небольших мощностях преобразования, к увеличению размеров системы. В конечном итоге, полумостовые схемы наилучшим образом подходят для построения маломощных преобразователей, а для зарядных устройств электромобилей достичь максимального значения удельной мощности можно только при использовании мостовых схем.

В хорошо спроектированной LLC-схеме силовые полупроводниковые приборы во всем диапазоне токов нагрузки переключаются при нулевом напряжении, что обеспечивает практически нулевой уровень динамических потерь. Однако в некоторых режимах, например, при запуске преобразователя или при емкостном режиме работы резонансного контура (Capacitive Mode Operation – когда ток резонансного контура опережает по фазе приложенное к нему напряжение), схема может кратковременно выйти из резонансного режима, и тогда транзисторы инвертора будут работать в режиме жестких переключений. Поэтому специалисты компании Infineon рекомендуют создавать инверторы LLC-преобразователей на основе  MOSFET c быстродействующими диодами, имеющих достаточный запас по току.

Рис. 7. Схема мостового LLC-преобразователя с синхронным выпрямителем на вторичной стороне

Рис. 7. Схема мостового LLC-преобразователя с синхронным выпрямителем на вторичной стороне

Основным недостатком LLC-преобразователей является регулирование выходной мощности путем изменения частоты переключений, а не путем изменения коэффициента заполнения импульсов выпрямленного напряжения. Это приводит к усложнению фильтров электромагнитных помех, которые теперь должны быть рассчитаны на работу в более широком частотном диапазоне. Кроме того, данный способ регулирования имеет ограниченную скорость изменения величины преобразуемой мощности и вызывает ряд проблем при параллельной работе нескольких преобразователей из-за сложности обеспечения равномерного распределения токов между отдельными силовыми каналами.

Заключение

Рассмотренные в этой статье схемы имеют наилучшие на сегодняшний день технические характеристики. Однако не следует забывать также и о том, что каждая из рассмотренных схем имеет свои достоинства, недостатки и ограничения, поэтому поиск наилучшего решения, максимально соответствующего поставленному техническому заданию, все еще остается задачей разработчика.

Дополнительная информация

  1. www.infineon.com/CFD7A
  2. www.infineon.com/onboard-battery-charger
  3. Электронная книга с полной версией статьи

Перевел Александр Русу по заказу АО Компэл

•••

Наши информационные каналы

О компании Infineon

Компания Infineon является мировым лидером по производству силовых полупроводниковых компонентов, а также занимает ведущие позиции по производству автомобильной полупроводниковой электроники и смарт-карт. В 2015 году компания Infineon приобрела компанию International Rectifier, тем самым значительно усилив свои лидирующие позиции в области силовой электроники. Это сочетание открывает новые возможности для клиентов, так как обе компании превосходно дополняют друг друга благодаря высокому уровню р ...читать далее

Товары
Наименование
IPD60R360CFD7ATMA1 (INFIN)
IPD60R280CFD7ATMA1 (INFIN)
IPD60R210CFD7ATMA1 (INFIN)
IPW65R115CFD7AXKSA1 (INFIN)
IPW60R031CFD7XKSA1 (INFIN)
IPW60R170CFD7XKSA1 (INFIN)
IPW60R070CFD7XKSA1 (INFIN)