Транзисторы Linear Power MOSFET от Littelfuse – безопасная работа в активном режиме

22 марта

управление питаниемLittelfuseстатьядискретные полупроводникиMOSFET

Транзисторы Linear Power MOSFET производства компании Littelfuse обеспечивают безопасную работу в схемах, где требуется длительная работа в активном режиме. Благодаря использованию механизмов подавления положительной обратной связи они не склонны к саморазогреву, имеют расширенную область безопасной работы и способны рассеять больше тепла на кристалле, чем аналоги других производителей.

Мощные полевые транзисторы с изолированным затвором (MOSFET) чаще всего используются в качестве коммутаторов, поэтому они работают либо в режиме насыщения, либо в режиме отсечки. Однако в ряде узлов, например, в компенсационных стабилизаторах, усилителях класса А или электронных нагрузках их рабочая точка должна находиться на линейном участке вольт-амперной характеристики. Этот режим характеризуется одновременным наличием ненулевого тока стока и достаточно высокого напряжения между стоком и истоком, что приводит к выделению на кристалле довольно большого количества тепла.

Если кристалл транзистора разогреется до критической температуры, то в нем произойдут необратимые изменения и полупроводниковый прибор выйдет из строя. Для предотвращения этого необходимо следить за электрическими режимами работы транзистора и не допускать появления опасных термических перенапряжений. Это значит, что полупроводниковые приборы, предназначенные для работы в активном режиме, подразумевающем рассеяние на кристалле большого количества тепла, должны как минимум иметь расширенную область безопасной работы в режимах с прямым смещением (Forward-bias Safe Operating Area, FBSOA).

Давайте рассмотрим особенности нового семейства полевых транзисторов с изолированным затвором Linear Power MOSFET, специально разработанных компанией Littelfuse для узлов, требующих работы транзисторов в активных режимах. Особенностью этих приборов является расширенная область безопасной работы, достигаемая за счет подавления внутренних положительных обратных связей и уменьшения электротермической нестабильности.

Упрощенная конструкция транзистора Linear Power MOSFET показана на рисунке 1. В этих приборах, как и в других MOSFET, существует паразитный биполярный n-p-n-транзистор, образованный областями с разными типами проводимости. Эмиттерный переход биполярного транзистора надежно шунтируется путем соединения подложки MOSFET с его истоком, поэтому он остается в закрытом состоянии даже в экстремальных электрических режимах.

Рис. 1. Структура Linear Power MOSFET

Рис. 1. Структура Linear Power MOSFET

Еще одной особенностью транзисторов Linear Power MOSFET является контроль величины теплового сопротивления каждого транзистора, выполняемый в процессе производства. Такая проверка проводится для выявления возможных дефектов сборки, в частности наличия пустот припоя, увеличивающих риск возникновения точек локального нагрева.

Основными приложениями для транзисторов Linear Power MOSFET являются схемы, в которых транзистор должен длительное время находиться в активном режиме, например, электронные нагрузки, использующиеся для тестирования источников питания.

Вторичный пробой

В мощных силовых MOSFET под термином «вторичный пробой» (Second Breakdown) подразумевается внезапная потеря управляемости транзистора с последующим самопроизвольным переходом в состояние с малым сопротивлением канала. Происходит это из-за открытия паразитного биполярного транзистора, которое может произойти, например, из-за слишком резких изменений напряжения между истоком и стоком. Вторичный пробой силовых MOSFET, работающих в ключевых режимах, обычно не возникает. Однако в схемах, где рабочая точка MOSFET большую часть времени находится на линейном участке вольт-амперной характеристики, вероятность возникновения вторичного пробоя значительно возрастает из-за возможности фокусировки тока в определенных участках кристалла, приводящих к появлению локальных термических перенапряжений.

При работе в режиме насыщения увеличение плотности тока в некоторой области кристалла приводит к локальному увеличению температуры. Полупроводниковый материал канала MOSFET обладает положительным температурным коэффициентом сопротивления, поэтому при разогреве сопротивление перегруженной части канала увеличивается, что приводит к уменьшению тока и, как следствие, к ее охлаждению [1]. Таким образом, в режиме насыщения происходит автоматическое перераспределение тока внутри кристалла, что позволяет соединять параллельно несколько MOSFET без необходимости применения дополнительных балансирующих элементов.

Однако увеличение температуры кристалла приводит не только к росту сопротивления канала, но и к уменьшению порогового напряжения – напряжения между затвором и истоком, при котором между стоком и истоком образуется проводящий канал и начинает протекать ток. При работе в режиме насыщения сигнал управления значительно больше порогового напряжения, поэтому этот эффект не оказывает какого-либо заметного влияния на тепловой режим транзистора. Однако при работе в активном режиме, когда напряжение между затвором и истоком находится близко к пороговому значению, локальный нагрев кристалла может привести к еще большему увеличению температуры перегретого участка. Таким образом, при работе в активном режиме, даже если рассеиваемая мощность находится в пределах допустимых значений, возможен неконтролируемый саморазогрев кристалла, в результате которого может произойти вторичный пробой с последующим разрушением полупроводниковой структуры [2].

Типовая вольт-амперная характеристика мощного N-канального MOSFET показана на рисунке 2. В области отсечки напряжение между затвором и истоком VGS меньше порогового значения VGS(TH), поэтому транзистор находится в выключенном состоянии и ток между его истоком и стоком отсутствует. В режиме насыщения поведение MOSFET аналогично поведению резистора с сопротивлением RDS(ON), величина которого равна отношению напряжения между стоком и истоком VDS к току ID, протекающему в цепи стока. В активном режиме ток стока ID является функцией от напряжения между затвором и истоком VGS и может быть определен по формуле 1:

$$I_{D}=K\left(V_{GS}-V_{GS(TH)} \right)^2=g_{FS}\left( V_{GS}-V_{GS(TH)} \right),\qquad{\mathrm{(}}{1}{\mathrm{)}}$$

где:

  • K – параметр, зависящий от температуры и геометрических размеров транзистора;
  • gFS – крутизна его характеристики.

Рис. 2. Типовая вольт-амперная характеристика мощного MOSFET

Рис. 2. Типовая вольт-амперная характеристика мощного MOSFET

Положительное напряжение VGS нейтрализует запирающий потенциал стока, увеличивая количество электронов в областях с дырочной проводимостью (p-областях). По мере роста напряжения VGS количество неосновных носителей заряда в p-областях увеличивается до тех пор, пока при напряжении VGS(TH) потенциал p-областей не станет равным нулю. С этого момента между стоком и истоком образуется проводящий канал, ток которого определяется разницей напряжений VGS – VGS(TH) [3].

Область безопасной работы является совокупностью графиков, определяющих режимы работы транзистора, в которых он может находиться без риска разрушения кристалла. Типовая область безопасной работы мощных MOSFET в режиме прямых смещений показана на рисунке 3. Она ограничена максимально допустимым напряжением между стоком и истоком VDSS, максимально допустимым током стока IDM, а также линиями, определяющими возможные комбинации напряжения и тока для максимально допустимой мощности рассеяния PD.

Рис. 3. Типовая область безопасной работы мощных MOSFET

Рис. 3. Типовая область безопасной работы мощных MOSFET

В данном случае на рисунке 3 присутствуют линия для продолжительно протекающего тока стока (DC) и четыре линии для одиночных импульсов длительностью 10, 1, 100 и 25 мкс. Левая верхняя часть области безопасной работы сформирована линией, являющейся функцией максимально возможного значения тока стока при данном напряжении и сопротивлении канала RDS(ON).

В общем случае, максимальное значение мощности PD, которая может быть рассеяна на кристалле, определяется формулой 2:

$$P_{D}=\frac{T_{Jmax}-T_{C}}{Z_{thJC}}=V_{DS}I_{D},\qquad{\mathrm{(}}{2}{\mathrm{)}}$$

где:

  • ZthJC – тепловое сопротивление «кристалл-корпус»;
  • TJmax – максимально допустимая температура кристалла MOSFET;
  • TC – температура корпуса транзистора.

Однако формула 2 получена, исходя из предположения, что кристалл MOSFET имеет одинаковую температуру во всех точках, а это не соответствует действительности. Начнем с того, что сторона транзистора, припаянная к охлаждающей пластине его корпуса, имеет меньшую температуру, чем внутренние области кристалла, что является естественным физическим процессом передачи тепла. Во-вторых, кристалл транзистора может иметь внутренние дефекты, например, пустоты или полости, приводящие к локальным увеличениям теплового сопротивления и, как следствие, к локальному перегреву внутренних областей кристалла. В-третьих, концентрация легирующих добавок и толщина изолятора затвора могут привести к флуктуациям порогового напряжения и крутизны gFS ячеек MOSFET, что также негативно сказывается на равномерности прогрева полупроводниковой структуры.

При работе в ключевом режиме эти нарушения и отклонения в большинстве случаев безопасны и не влияют на поведение схемы. Однако если транзистор работает в активном режиме, то последствия, вызванные подобными неоднородностями, могут быть самыми катастрофическими, особенно в случае, когда продолжительность нахождения транзистора в режиме повышенного тепловыделения превышает время, необходимое для переноса тепла от кристалла к радиатору. Результаты исследований показали, что современные мощные MOSFET, оптимизированные для работы в ключевых режимах, при перемещении рабочей точки в правый нижний угол области безопасной работы обладают электротермической нестабильностью (Electro-Thermal Instability, ETI), приводящей к выходу их из строя.

Электротермическую нестабильность можно объяснить наличием положительной обратной связи, возникающей внутри MOSFET, работающего в активном режиме. Упрощенный механизм саморазогрева отдельных областей кристалла можно описать четырьмя этапами:

  • вначале увеличивается температура в месте существования неоднородности;
  • увеличение температуры приводит к уменьшению величины порогового напряжения VGS(TH) на этом участке кристалла, поскольку пороговое напряжение имеет отрицательный температурный коэффициент;
  • уменьшение порогового напряжения приводит к увеличению локальной плотности тока JDS, поскольку она является функцией от квадрата разности напряжений (VGS – VGS(TH))2;
  • увеличение локальной плотности тока приводит к еще большему увеличению температуры в месте появления неоднородности.

При неблагоприятных условиях, на возникновение которых влияет множество факторов, в том числе длительность импульса повышенной мощности, особенности конструкции транзистора и условий его охлаждения, электротермическая нестабильность может привести к тому, что весь ток стока сосредоточится в одной узкой области канала. Подобное перераспределение приведет к тому, что паразитный биполярный транзистор из-за высокой температуры уже не сможет находиться в закрытом состоянии и начнет пропускать электрический ток. Открытие паразитного биполярного транзистора означает потерю управляемости MOSFET (защелкивание), в результате чего ток стока перестанет зависеть от напряжения между затвором и истоком, и для перевода MOSFET в первоначальное состояние будет необходимо отключить цепь стока от источника питания и дать кристаллу остыть. Но поскольку в реальной схеме это чаще всего невозможно, то защелкивание транзистора в результате электротермической нестабильности приведет к еще большему увеличению тока стока из-за возникшего короткого замыкания и, как следствие, к разрушению кристалла.

Принимая это во внимание, компания Littelfuse разработала специализированную линейку транзисторов Linear Power MOSFET, оптимизированную для использования в приложениях, требующих функционирования полевых транзисторов в активном режиме. Особенностью этих полупроводниковых приборов является расширенная область безопасной работы, достигнутая за счет внедрения специализированных механизмов подавления положительных обратных связей, являющихся причиной электротермического разогрева [3].

В технической документации на транзисторы Linear Power MOSFET приводится гарантированная область безопасной работы, рассчитанная с учетом особенностей работы в активном режиме. Одним из таких MOSFET является транзистор IXTK22N100L, область безопасной работы которого показана на рисунке 4. Как видно из этого рисунка, на графиках присутствуют не только расчетные значения, но и точка, в которой проводятся испытания каждого прибора из этой линейки.

Рис. 4. Область безопасной работы MOSFET IXTK22N100L

Рис. 4. Область безопасной работы MOSFET IXTK22N100L

Основные технические характеристики транзисторов Linear Power MOSFET, позволяющих получить представление о возможностях этой линейки, приведены в таблице 1.

Таблица 1. Основные характеристики транзисторов Linear Power MOSFET

Наименование VDSS, В ID, А RthJC, К/Вт Безопасная величина рассеиваемой мощности PD
(TC = 90°C), Вт
Корпус
IXTH24N50L 500 24 0,31 200 (VDS = 400 В, ID = 0,5 А) TO-247
IXTH46N50L 500 46 0,18 240 (VDS = 400 В, ID = 0,6 А) SOT-227B
IXTK22N100L 1000 22 0,18 240 (VDS = 800 В, ID = 0,3 А) TO-264
IXTH30N100L 1000 30 0,156 300 (VDS = 600 В, ID = 0,5 А) SOT-227B

Согласно формуле 2, на кристалле MOSFET IXTK22N100L, у которого максимально допустимое напряжение «сток-исток» равно 1000 В, может рассеиваться мощность 700 Вт. Столь высокое значение рассеиваемой мощности может быть достигнуто в импульсных режимах, но не в схемах, где транзистор длительное время работает в активном режиме. Поэтому компания Littelfuse в технической документации на этот прибор приводит реальные области безопасной работы при разных температурах, полученные при условиях длительного нахождения прибора в активном режиме. Например, для транзистора IXTK22N100L максимально допустимая мощность при температуре корпуса транзистора TC = 90°C не должна превышать 240 Вт (VDS = 800 В, ID = 0,3 А).

Примеры применения транзисторов Linear Power MOSFET

Одним из примеров практического применения транзисторов Linear Power MOSFET являются электронные нагрузки, используемые для тестирования источников питания. Электронная нагрузка фактически является программируемым резистором, образованным несколькими параллельно включенными высоковольтными MOSFET, работающими в активном режиме. В такой схеме вероятность равномерного распределения тока между транзисторами крайне мала, поскольку даже небольшой технологический разброс параметров MOSFET, в частности, порогового напряжения и крутизны, при работе в активном режиме приводит к значительной разбалансировке схемы.

Для равномерного распределения тока между разными транзисторами используются схемы местной отрицательной обратной связи на основании напряжений, формируемых резистивными датчиками тока, включенными в цепи истока каждого транзистора. Напряжение на токоизмерительном резисторе зависит от параметров конкретной схемы и обычно находится в диапазоне 1…2 B. Тепловая стабильность схемы определяется температурным коэффициентом резисторов [2].

Рассмотрим электронную нагрузку, рассчитанную на тестирование источников питания с выходным напряжением до 600 В и максимальным током до 2 А. При таких значения напряжения и тока в этой схеме должны использоваться транзисторы с максимально допустимым напряжением между стоком и истоком не менее 600 В.

Максимальную мощность, развиваемую блоком питания, можно определить по формуле 3:

$$P_{0}=I_{0}V_{0},\qquad{\mathrm{(}}{3}{\mathrm{)}}$$

где:

I0 = 2 А – максимальный ток;

V0 = 600 В – максимальное напряжение источника питания.

Таким образом, максимальная мощность блока питания равна P0 = 2 × 600 = 1200 Вт.

В подобной электронной нагрузке можно использовать мощные полевые транзисторы IXTK22N100L, имеющие максимально допустимое напряжение 1000 В и максимально допустимый ток 22 А. Согласно технической документации, их максимальная рассеиваемая мощность в импульсном режиме равна 700 Вт, однако в активном режиме ее величина не должна превышать 240 Вт. Но поскольку полупроводниковые приборы должны иметь некоторый запас по всем ключевым параметрам, таким как напряжение, ток, мощность, то приняв, что величина рассеиваемой мощности не должна превышать 80% от максимально допустимого значения, получим, что на одном транзисторе IXTK22N100L должно рассеиваться не более 192 Вт тепла.

Максимально допустимая мощность электронной нагрузки также должна быть как минимум на 20% больше мощности тестируемого устройства. Это значит, что при мощности блока питания 1200 Вт максимально допустимая мощность, рассеиваемая на транзисторах, должна быть не менее 1440 Вт. Поскольку это число значительно превышает мощность, которую можно рассеять на одном транзисторе (192 Вт), то для реализации эталонной нагрузки необходимо использовать несколько параллельно соединенных транзисторов. В данном случае необходимо применить не менее восьми транзисторов IXTK22N100L (1400/192 ≈ 8).

Упрощенная принципиальная схема электронной нагрузки показана на рисунке 5 [2]. Резисторы RS1…RS8 используются в качестве датчиков тока транзисторов Q1…Q8. От их точности зависит равномерность распределения тока между каналами. Напряжение с этих резисторов поступает на инвертирующие входы операционных усилителей U1…U8, управляющих соответствующими транзисторами. Неинвертирующие входы всех усилителей соединены вместе и используются для установки тока, потребляемого схемой от тестируемого источника питания. Выходы операционных усилителей подключаются к затворам транзисторов через резисторы RG1…RG8 сопротивлением 5…50 Ом, предназначенных для ограничения тока затвора. Наличие этих резисторов является необязательным, однако они повышают устойчивость схемы.

Рис. 5. Упрощенная принципиальная схема электронной нагрузки мощностью 1440 Вт

Рис. 5. Упрощенная принципиальная схема электронной нагрузки мощностью 1440 Вт

Благодаря использованию механизмов подавления положительной обратной связи транзисторы Linear Power MOSFET производства компании Littelfuse не склонны к саморазогреву и имеют расширенную область безопасной работы. Это позволяет преодолеть ряд ограничений и безопасно использовать их в схемах, где требуется длительная работа в активном режиме. Транзисторы Linear Power MOSFET могут рассеивать на кристалле больше тепла, чем их аналоги, предназначенные для использования в ключевых режимах, однако не следует забывать, что величина мощности, рассеиваемой на кристалле в активном режиме, в любом случае будет меньше, чем при работе в импульсных схемах. 

Литература

  1. Consoli, Alfio et al, “Thermal Instability of Low-Voltage Power MOSFETs,” IEEE Transactions on Power Electronics, Vol. 15, No. 3, May 2000.
  2. Frey, Richard, Grafham, Denis, Mackewich, Tom, “New 500V Linear MOSFETs for a 120 kW Active Load,” Application Note, Advanced Power Technology (APT), 2000.
  3. Baliga, B. Jayant, “Power Semiconductor Devices,» PWS Publishing Co., 1996.
  4. Zommer, Nathan, “Monolithic Semiconductor Device and Method of Manufacturing Same,” U.S. Patent No. US4860072, August 1989.

Оригинал статьи

Перевел Александр Русу по заказу АО КОМПЭЛ

•••

Наши информационные каналы

О компании Littelfuse

Компания Littelfuse является ведущим мировым производителем компонентов и устройств для защиты электрических и электронных цепей любого рода. Поставляемые компанией компоненты и системы, во многих случаях являются жизненно важными для устройств в практически всех отраслях и видах продукции: от бытовой электроники и автомобилей до электроэнергетики. Littelfuse предлагает наиболее широкий и полный спектр компонентов и систем защиты цепей на рынке электронных компонентов. Компания расширяет и н ...читать далее

Товары
Наименование