Реализация «умных» сетей на базе компонентов PLC от Texas Instruments

21 октября 2013

Технология передачи данных по сетям электропитания (PLC — power line communications) позволяет ввести автоматизированную систему управления в новую или уже существующую инфраструктуру, минимизируя затраты как при разработке проекта инфраструктуры, так и при прокладке дополнительных сетей передачи данных.

Идея PLC ведет начало с 1838 года, когда Эдвард Дэйви предложил использовать подобную технологию для дистанционного измерения уровней напряжения батарей на Ливерпульской телеграфной системе. Однако, лишь с появлением современных компонентов, позволяющих бюджетно реализовать необходимую вычислительную мощность (OFDM, о котором будет сказано ниже, достаточно долго «пылился на полке» из-за сложности реализации), технология PLC действительно стала актуальной и доступной в промышленном и в домашнем секторах, обеспечив необходимую надежность, скорость и простоту развертывания.

В настоящее время PLC используется, в основном, в системах энергоучета, простой автоматизации (освещение, приводы механизмов). Реже — это «последняя миля» в сетях передачи данных (Интернет), в голосовой связи. Развитие технологии сделало возможным использование не только в сетях переменного тока. Отсутствие дополнительных проводов оказалось настолько привлекательным, что сейчас осуществляется интеграция PLC даже в системы электропроводки автомобилей.

 

Технология

Основа PLC — модуляция фазы силовой линии, использование ее как несущей. Вариантов модуляции четыре: частотная (FSK — Frequency Shift Keying), частотная с разнесенными частотами (S-FSK — Spread Frequency Shift Keying), двоичная фазовая (BPSK — Binary Phase Shift Keying) и ортогональное мультиплексирование с частотным разделением каналов (OFDM — Orthogonal Frequency Division Multiplexing). Выбор варианта определяется двумя критериями — эффективностью использования полосы частот и сложностью реализации, что, в свою очередь, определяет скорость передачи данных и помехоустойчивость. OFDM — наиболее скоростной и помехоустойчивый, но сложен в реализации, так как требователен к вычислительным ресурсам, в то время как BPSK и FSK легко реализуются, но обеспечивают лишь низкие скорости. Для FSK требуется синхронизация при переходе фазы через ноль, что ограничивает его использование только сетями переменного тока.

Кроме того, PLC-системы реализуются с учетом требований стандартов (IEC 61334, PRIME, G3 и других) или местных регуляторных требований (CENELEC, FCC и т.д.).

В таблицах 1 и 2 показаны сравнительные характеристики основных вариантов модуляции, стандартов и требований.

Таблица 1. Основные стандарты для PLC, поддерживаемые компанией TI   

Стандарт Модуляция Диапазон
частот, кГц
Количество
поднесущих
Максимальная скорость обмена
данными, кБод
IEC 61334   SFSK   60…76   2   1,2…2,4  
PRIME   OFDM   42…90   97   128  
G3   OFDM   35…90   36   34  
G3-FCC   OFDM   145…314   36   206  
314…478   36   206  
145…478   72   289  
P1901.2   OFDM   35…90   36   34  
P1901.2-FCC   OFDM   145…314   36   217  
314…478   36   217  
145…478   72   290  
PLC-Lite   OFDM   35…90   49   21  

 

Таблица 2. Регуляторные инструкции

Регион Инструкция Диапазон частот, кГц Примечания
Европа   CENELEC A   3…95   для поставщиков электроэнергии  
CENELEC B   95…125   для пользовательских приложений  
CENELEC C   125…140   для пользовательских приложений (стандарт CSMA)  
CENELEC D   140…148,5   для пользовательских приложений  
США   FCC   10…490   —  
Япония   ARIB   10…450   —  
Китай   EPRI   3…500 (3…90)   —  

 

PRIME

Альянс PRIME разработал стандарт с возможностью адаптации к параметрам физической среды передачи. Экспериментальным методом было обнаружено, что для достижения оптимальных результатов передачи данных необходимо 96 поднесущих. Топология сети — древовидная, с двумя типами узлов — базовым (корень дерева сети) и сервисными. Сервисные узлы способны работать в двух режимах — терминала и коммутатора, причем, переключение между режимами возможно в любой момент, в зависимости от требований сети, а режим коммутатора совмещает в себе режим терминала. Всего в сети может быть 1200 узлов, 32 из которых могут находится в режиме коммутатора, и осуществляется адресация до 3600 подсоединений.

Основное преимущество данного стандарта в открытости технологии, высокой скорости передачи данных и поддержке огромным числом производителей, что обеспечивает взаимозаменяемость оборудования, а также — возможность работы в режиме SFSK, обеспечивая совместимость с более старым оборудованием.

 

G3

В отличие от PRIME, изначально стандарт G3 разрабатывался компанией Maxim Integrated для французской компании ERDF, и лишь позже произошло объединение более десяти компаний в G3-PLC Alliance, что сделало G3 открытым.

G3 имеет более сложную систему кодирования (код Рида-Соломона), топологию ячеистой сети с максимальным количеством узлов — 1024. Стандарт более помехоустойчив, чем PRIME, но скорость передачи данных существенно ниже.

Помимо топологии и скорости, у G3 имеются два серьезных преимущества перед PRIME: первый — это возможность осуществлять связь через трансформаторы. Учитывая, что дальность связи без повторителей может достигать 10 км, данная особенность снижает количество концентраторов до максимально эффективного числа, что уменьшает общую стоимость проекта.

Вторая особенность — наличие 6LoWPAN-уровня, что позволяет осуществлять передачу IPv6-пакетов для интеграции с сетью Интернет.

G3 не поддерживает устройства SFSK, но допускает параллельную работу с ними на одной линии.

 

PLC-Lite

Помимо международных стандартов, существуют иные решения. Компания Texas Instruments предлагает собственный стандарт PLC-Lite.

Преимущество этого стандарта — более гибкий подход к реализации PLC, разработчики оборудования могут оптимизировать характеристики для улучшения передачи данных, и там, где G3 и PRIME испытывают затруднения из-за помех, PLC-Lite успешно справится. Кроме того, реализация PLC-Lite имеет низкую стоимость, что позволяет использовать его в недорогих проектах.

Существует еще одно важное свойство PLC-Lite: для небольших задач предусмотрено использование микроконтроллера PLC-модема, что позволяет обойтись от использования хост-контроллера. Это настолько упрощает разработку устройств и снижает стоимость, что становится экономически возможной интеграция PLC-модемов в сеть на бытовом уровне «выключатель — лампочка». Ниже будет описан один из проектов, показывающий эффективность такого решения.

 

Аппаратная реализация

Для реализации данной технологии используются PLC-модемы, которые условно можно разделить на три составляющие: согласующий модуль с силовой сетью, аналоговая и цифровая части. Реализация модемов разнообразна — существуют как одночиповые решения, так и многоэлементные. На рисунке 1 показана типичная схема PLC-модема для OFDM (для FSK и G3 дополнительно потребуется детектор перехода фазы через ноль (Zero-Cross detector).

 

Стандартный PLC-модем от TI

 

Рис. 1. Стандартный PLC-модем от TI

Для обеспечения обработки аналогового сигнала компания TI предлагает микросхемы AFE030, AFE031 и AFE032, которые отличаются величиной выходной токовой нагрузки передатчика, количеством детекторов перехода фазы через ноль (два — у AFE030 и AFE031, три — у AFE032) и возможностью программирования фильтра (AFE032). Эти микросхемы позволяют реализовать FSK-, SFSK- и OFDM-модуляцию в соответствии с требованиями CENELEC. Блок-схема микросхем на примере AFE031 представлена на рисунке 2, а подробная функциональность и особенности описаны в нашем журнале ранее: НЭ №10/2012: «Любой протокол — по проводам: решения Texas Instruments для PLC-систем передачи данных» и НЭ №7/2011: «Концерт для счетчика и сети: PLC-модемы компании Texas Instruments».

 

Блок-схема AFE031 - аналоговой части PLC-модема

 

Рис. 2. Блок-схема AFE031 — аналоговой части PLC-модема

«Мозгом» модема является микроконтроллер семейства C2000 компании TI, оптимизированный для работы в PLC-модемах в качестве DSP. В настоящий момент компания TI предлагает несколько решений, базирующихся на региональных требованиях и стандартах и учитывающих оптимальность требуемых параметров. К примеру, если требуется разветвленная сеть системы сбора данных энергоучета в соответствии с CENELEC и стандартами G3 и/или PRIME, то идеальным решением будет PLC-модем, построенный на базе F28PLC83 в связке с аналоговым блоком AFE031, это же решение с использованием FlexOFDM (PLC-Lite) позволит осуществить связь в условиях сильных помех. Если же требуется относительно простая система на уровне «точка-точка», то пара F28PLC35/AFE030 стандарта PLC-Lite подойдет наилучшим образом. В частности, F28PLC35/AFE030 идеально подходит для построения связей внутри одного объекта, например, для управления/автоматизации освещения, водоснабжения и прочих систем.

Разумеется, решения можно использовать комплексно, например, недорогой F28PLC35/AFE030 может использоваться для передачи данных от энергосчетчика к домашнему дисплею и к коллектору данных, более мощный — от коллектора к дата-центру.

В таблице 3 приведены сравнительные характеристики вышеназванных решений.

Таблица 3. Решения PLC-модемов от TI   

Особенности F28PLC35/AFE030 (PLC-Lite) F28PLC83/AFE031 (CEN-A/BCD) F28M35/AFE032 (FCC)
Региональный диапазон частот   CELENEC A, CENELEC BCD half band   CENELEC A, B, C, D with Tone Masks   CENELEC A,B,C,D, FCC, ARIB  
Стандарт   FlexOFDM   PRIME/G3/IEC 61334/FlexOFDM   P1901.2/G3-FCC  
Скорость передачи
данных, кБод
 
21   64…128   200  
Стоимость   очень низкая   низкая   средняя  
CPU, МГц   60   90 (VCU-I)   150 (VCU-I)  
Преимущества   низкая стоимость надежность OFDM гибкий выбор диапазона высокая производительность NBI CLA для приложений CSMA/CA MAC множество стандартов сертифицированный SW улучшенный алгоритм приема простой пользовательский интерфейс множество стандартов высокая производительность допонительные методы надежности Adaptive Tone Mask проверен практикой
Иcпользование   In-Home Display (IHD) Home Area Network (HAN) Automatic Meter Reading (AMR) Advanced Metering Infrastructure (AMI) In-Home Display (IHD) (Home Area Network) HAN Energy Gateway Automatic Meter Reading (AMR) Advanced Metering Infrastructure (AMI) Electric Vehicle Supply Equipment (EVSE) In-Home Display (IHD) (Home Area Network) HAN Energy Gateway

 

Практическое применение

Способность легкой интеграции технологии PLC практически везде, где есть силовые сети, открыла широкие возможности для энергосбытовых компаний, позволив реализовать управление потребителем и обратную связь с потребителем. Оснащение приборов учета PLC-модемами позволит:

  • упростить фискальность;
  • осуществлять сбор статистики по качеству и количеству энергоснабжения с очень точной привязкой ко времени;
  • прогнозировать энергопоставки;
  • оценивать состояние линий;
  • оперативно вмешиваться в текущее состояние, например, осуществлять приоритетное подключение потребителей в аварийных ситуациях;
  • снизить вероятность возникновения аварийных ситуаций за счет «направленной превентивности» в обслуживании линий энергопередач.

На данный момент существует потребность в счетчиках для ЖКХ различного типа. Компания TI готова предложить различные варианты решений (в том числе — программно-отладочные средства), позволяющие построить «умную» сеть практически под любые требования (рисунок 3). Рассмотрим практический пример энергоучета на базе этих решений.

 

Блок-схема автоматической системы измерения

 

Рис. 3. Блок-схема автоматической системы измерения

Обычно в домах присутствует как минимум три счетчика — счетчик электроэнергии и два счетчика водоснабжения. Однако, их может быть гораздо больше: существуют проекты домов, где есть газоснабжение, водоснабжение подводится дважды, что требует наличия уже четырех счетчиков. И, если с электросчетчиком особых проблем нет, то с остальными необходимо осуществить достоверную связь с помощью иного интерфейса. Да и существование в сети каждого счетчика индивидуально не представляется практичным. Добавим необходимость аварийного отключения систем энергоснабжения (а за рубежом — еще и отключение по окончанию оплаты) — это потребует дополнительных датчиков и исполнительных механизмов. Кроме того, конечному пользователю крайне любопытно, сколько, где, когда и чего потрачено, а возможности «умной» сети сообщить ему такую информацию гораздо выше, чем у простого счетчика. Значит, необходим модуль отображения информации. А теперь давайте умножим все это на некоторое число квартир в доме, районе…

Поэтому в автоматизированной измерительной инфраструктуре (AMI) присутствует важный элемент — концентратор данных (рисунок 4).

 

Пример концентратора данных от TI

 

Рис. 4. Пример концентратора данных от TI

Условно модуль концентратора можно разделить на четыре части: основной процессор приложений, модуль связи c сервером данных (и с некоторыми счетчиками) на базе PLC-модема, блок питания и интерфейсные модули для связи со счетчиками и пользователями по множеству различных интерфейсов.

Основой концентратора служит процессор TI семейства Sitara AM335x (ARM Cortex-A8) или семейства Stellaris (Cortex-M4) или ARM-DSP, что позволяет разработчику выбрать оптимальное по стоимости решение в зависимости от технических условий.

Большое количество интерфейсов у концентратора данных позволит собрать данные со счетчиков или обеспечить связь с сервером там, где применение технологии PLC по каким-либо причинам оказалось невозможным.

Благодаря возможности процессора PLC-модема от TI выполнять пользовательские приложения, схема автоматизированной системы измерения становится достаточно проста, а ее построение весьма гибко: электросчетчик совместно с PLC-модемом и дополнительными интерфейсами способен осуществлять сбор данных с других счетчиков, управлять исполнительными механизмами и отображать информацию для пользователя. На рисунке 5 показано типовое решение электросчетчика, рассчитанного на широкую универсальность.

 

Пример электросчетчика на базе компонентов TI

 

Рис. 5. Пример электросчетчика на базе компонентов TI

Типовые решения счетчиков газо- и водоснабжения выполнены на базе микроконтроллеров TI серии MSP430, отличающихся низким потреблением тока, что делает возможным батарейное питание. На рисунке 6 и 7 видно, что, помимо основных систем измерения, отображения и связи, присутствует RFID-модуль. который обеспечивает режим авансовой оплаты услуг газо- и водоснабжения.

 

Пример счетчика газоснабжения на базе компонентов TI

 

Рис. 6. Пример счетчика газоснабжения на базе компонентов TI

 

 

Пример счетчика водоснабжения на базе компонентов TI

 

Рис. 7. Пример счетчика водоснабжения на базе компонентов TI

Помимо возможности контроля показаний непосредственно на счетчиках, в «умной» сети присутствует In-Home Display — центральный информационный дисплей (рисунок 8), благодаря которому нет необходимости проверять каждый счетчик по отдельности, все можно увидеть сразу. Это позволяет монтировать счетчики более удобно и/или не нарушать дизайн дома — как правило, в обычных случаях либо доступ к счетчику затруднен, и считывание показаний становится проблемой для пользователя, либо счетчик становится несимпатичной частью интерьера.

 

Информационный дисплей

 

Рис. 8. Информационный дисплей

Оснащение ЖКХ системами такого рода позволяет получить множество положительных моментов:

  • централизованный сбор информации о количестве потребленной энергии от всех пользователей сети позволяет своевременно выставлять счета с указанием точной суммы, вводить различные системы тарификации и осуществлять предупредительные и ограничительные меры при превышении лимита или нарушении правил энергопотребления;
  • более грамотное распределение средств на модернизацию и ремонт систем на основе информации о сбоях в системах энергопотребления и потребностях на отдельных участках;
  • возможность оперативно локализовывать и решать аварийные ситуации.

Кроме того, система настолько гибка, что позволяет вносить существенные дополнения без какого-либо глобального перестроения. Например, интеграция в систему датчиков утечек газа позволит внести превентивные меры по обеспечению безопасности.

К сожалению, для внедрения такой системы требуется решение серьезных организационных вопросов (и некоторые капиталовложения) со стороны энергосбытовых компаний и ЖКХ. Однако, такая система вполне оправдывает свое существование ради, удобства пользователя.

Автоматизация измерений — лишь одно из направлений применения технологии PLC. Немаловажная часть — возможность автоматизированного управления различными системами, такими как освещение, вентиляция, электроприводы ворот и жалюзи, системы альтернативного электропитания (рисунок 9).

 

Блок-схема автоматизированной системы управления

 

Рис. 9. Блок-схема автоматизированной системы управления

Благодаря широким возможностями микроконтроллера концентратора данных TI осуществляется целый ряд удобных, а иногда и необходимых возможностей управления:

  • контроль и управление всеми системами;
  • удаленное подключение через интернет;
  • автоматическое включение освещения по календарю или датчику;
  • автоматическое подключение аварийного источника питания с «умным» подключением потребителей;
  • выборочное или общее отключение систем при аварийных ситуациях;
  • дистанционное управление с пульта (например, открывание ворот гаража).

Разумеется, существуют альтернативные решения: собственные решения производителей освещения, электроприводов ворот и проч. Преимущество же решения на базе PLC-компонентов от TI — в возможности интеграции в уже существующий объект без каких-либо значительных изменений, а также — в универсальности.

В конечном итоге, единое управление намного проще, надежнее и удобней (неплохим примером могут служить два варианта аудио-видео техники: одного производителя с единым пультом управления и нескольких разных, с соответствующим количеством пультов), и дает возможность легкого расширения системы.

В некоторых случаях использование PLC-модемов может вообще быть единственным простым и экономически выгодным решением. Рассмотрим следующий типовой пример: коттедж, гостиная с четырьмя точками входа (улица, двор, лестница на второй этаж, кухня). Включение освещения в гостиной становится проблематичным — дешевое решение (один выключатель) просто неудобно. Удобно наличие четырех перекрестных (проходных) выключателей, по одному в каждой точке входа. Это позволит управлять освещением с любой точки, не делая лишних движений (при выключении — в темноте). Но для реализации необходимо к двум выключателям провести три провода, а еще к двум — четыре.

И ведь это управление одной лампой. Если же в люстре две и более групп ламп, количество проводов резко возрастает. Стоимость двухклавишного перекрестного выключателя даже без учета стоимости проводов уже сравнима со стоимостью PLC-модема. Стоимость работ по монтажу такой системы также достаточно высока. Попробуем создать такую же систему с возможностью регулировки яркости, и придется интегрировать что-то дистанционное непосредственно в лампу.

Применение PLC-модема производства компании TI избавляет от необходимости прокладки дополнительных кабелей, более того, заставляет несколько по-иному взглянуть на классическую систему: PLC-модем в роли выключателя и регулятора может быть интегрирован не только в точку подключения выключателя, но и в линию розеток. Подключение ламп также упрощается (не требуется разводки с выключателями). Количество и характер управления лампами становится несущественным. Дизайн выключателей (регуляторов) получает безграничные возможности. Кроме того, объединение в общую «умную» сеть позволяет реализовать систему аварийного освещения, не прокладывая ни единого дополнительного кабеля.

 

Отладочные средства производства TI

Для разработки систем на базе технологии PLC компания TI предлагает следующее:

  • MODEM DEVELOPER’S KIT TMDSPLCKIT-V3
  • Data Concentrator Evaluation Module TMDSDC3359

Набор TMDSPLCKIT-V3 включает в себя два PLC-модема, две управляющие карты на базе TMS320F28069, имеет встроенный USB-JTAG-эмулятор и все необходимые кабели. Также прилагается программное обеспечение для PLC, поддерживающее стандарты OFDM (PRIME, G3 и FlexOFDM) и S-FSK, и среда разработки Code Composer Studio v4.x с ограничением размера исполняемого кода 32 кбайт. Используемая микросхема аналоговой обработки сигнала — AFE031. Внешний вид одного из модемов показан на рисунке 10.

 

TMDSPLCKIT-V3

 

Рис. 10. TMDSPLCKIT-V3

Data Concentrator Evaluation Module TMDSDC3359 (рис. 11). Этот продукт позволяет отладить системы на базе концентратора данных. Построен на процессоре AM335x семейства Sitara ARM Cortex-A8 с OC Linux BSP. Плата имеет широкую периферию:

  • 2x USB;
  • 2x Ethernet;
  • 2x RS-232;
  • 3x RS-485;
  • инфракрасный приемопередатчик;
  • температурный датчик;
  • Sub-1ГГц и 2,4ГГц RF; AM335x.

 

Data Concentrator Evaluation Module TMDSDC3359

 

Рис. 11. Data Concentrator Evaluation Module TMDSDC3359

 

Есть возможность подключения модуля для коммуникации по трехфазным сетям. Импульсный блок питания встроен.

Поддерживаемые стандарты — G3, PRIME.

 

Заключение

Использование технологии PLC для передачи данных обладает множеством преимуществ, позволяя в кратчайшие сроки и с минимальными затратами развернуть «умную» сеть, способную быстро адаптироваться под требуемые задачи, а благодаря возможностям стандартов G3 и PRIME — под среду передачи данных.

Компания Texas Instruments предоставляет комплексное решение, от микросхем до ПО, для реализации PLC-сетей в системах управления и сбора информации. Благодаря своей гибкости, такое решение позволяет реализовать систему для любого типа протокола и удовлетворяет возможные требования регуляторных инструкций.

Компания КОМПЭЛ является официальным дистрибьютором Texas Instruments и может обеспечить разработчиков как самими процессорами и аналоговыми микросхемами, так и средствами разработки для реализации собственных PLC-проектов.

 

Литература

1. http://www.prime-alliance.org/wp-content/uploads/2013/03/MAC_Spec_white_paper_1_0_080721.pdf  

2. http://www.maximintegrated.com/products/powerline/pdfs/G3-PLC-Physical-Layer-Specification.pdf  

3. http://www.ti.com/lsds/ti/apps/smartgrid/end_equipment.page  

4. Андрей Самоделов. Концерт для счетчика и сети: PLC-модемы компании Texas Instruments//Новости Электроники №7/2011.

5. Алексей Пазюк. Любой протокол — по проводам: решения Texas Instruments для PLC-систем передачи данных//Новости Электроники №10/2012.

Получение технической информации, заказ образцов, поставка — e-mail: analog.vesti@compel.ru

 

Приложение Bluetooth Smart SensorTag от TI облегчает разработку Bluetooth-приложений в устройствах на AndroidTM 4.3

 

Компания Texas Instruments объявила о выходе на рынок приложения для ОС Android под названием Bluetooth Smart SensorTag, последовавшем за интеграцией поддержки приложения Bluetooth Smart Ready в ОС Android 4.3 "Jelly Bean". Новый продукт, доступный для бесплатного скачивания по адресу www.ti.com/sensortag-app-android-eu, устраняет препятствия для разработчиков приложений, желающих воспользоваться преимуществами миллионов смартфонов и планшетов на ОС Android, которые вскоре будут оснащены Bluetooth Smart Ready. Разработка блока приложений Bluetooth Smart, поддерживаемых теперь ОС Android и iOS, стала проще и быстрее при помощи набора разработчика Sensor Tag на базе CC2541. В набор входят шесть датчиков широкого применения, размещенных на одной плате для быстрой оценки и демонстрации. Дополнительная информация о наборе Sensor Tag размещена по адресу www.ti.com/lprf-stdroid-pr-eu.

Набор Sensor Tag не требует знаний в области программного или аппаратного обеспечения, чтобы быстро запустить приложения Bluetooth Smart на смартфоне или планшете. Разработчики делятся своими достижениями, сделанными при помощи Sensor Tag, на странице Texas Wiki (http://processors.wiki.ti.com/index.php/Bluetooth_SensorTag?DCMP=lprf-stdroid-eu&HQS=lprf-stdroid-pr-wiki1-eu) и в Твиттере по хештэгу #SensorTag.

Шесть встроенных датчиков набора Sensor Tag, включая бесконтактный инфракрасный температурный датчик TMP006 от TI, помогают разработать многочисленные приложения в таких областях, как здравоохранение и образование, а также создавать новые аксессуары для мобильных устройств. С набором работает бесплатное, обновляемое «по воздуху», ПО BLE-StackTM от TI. Набор Sensor Tag на базе CC2541 служит дополнением к другим решениям от TI — двухрежимному Bluetooth на базе СС2564 и WiLinkTM.

•••

Наши информационные каналы

О компании Texas Instruments

В середине 2001 г. компании Texas Instruments и КОМПЭЛ заключили официальное дистрибьюторское соглашение, которое явилось результатом длительной и успешной работы КОМПЭЛ в качестве официального дистрибьютора фирмы Burr-Brown. (Как известно, Burr-Brown вошла в состав TI так же, как и компании Unitrode, Power Trend и Klixon). С этого времени компания КОМПЭЛ получила доступ к поставке всей номенклатуры производимых компанией TI компонентов, технологий и отладочных средств, а также ...читать далее