Силовые резисторы в алюминиевом корпусе серии HS. Качество, проверенное временем

23 декабря 2013

Резисторы мощностью до нескольких кВт выпускаются серийно, для широкого применения, в то время как более мощные приборы, как правило, изготавливаются на заказ. В энергетике силовые резисторы (СР) применяются в коммутационной и защитной аппаратуре, обеспечивая демпфирование переходных процессов при штатных и аварийных переключениях в энергосистемах. Это приводит к снижению токов коротких замыканий, коммутационных токов и перенапряжений, скорости нарастания восстанавливающихся напряжений, повышению динамической устойчивости систем электроснабжения [1] и, в конечном итоге, значительно улучшает характеристики и уменьшает стоимость основного оборудования (силовых трансформаторов, автоматических выключателей и т.д.), а также повышает безопасность [2, 3]. СР нашли очень широкое применение в электроприводах постоянного и переменного тока (в тормозных резисторах, резисторах гашения возбуждения синхронных машин, наборах пусковых резисторов для ступенчатого регулирования тока и момента двигателей постоянного тока, резисторах для регулирования механических характеристик асинхронных двигателей с фазным ротором, резисторах для уменьшения просадки напряжения в маломощных электросетях при прямом пуске асинхронных двигателей с короткозамкнутым ротором), в машиностроении (особенно транспортном), в автономных системах электроснабжения (в качестве нагрузки для проверки технического состояния генераторов и аккумуляторов) [4,5].

Характерные задачи, решаемые с помощью СР в составе частотно-регулируемого электропривода (используется стандартная структура преобразователя частоты с промежуточной шиной постоянного тока), показаны на рисунке 1 [4].

Применение СР в частотно-регулируемом электроприводе

 

Рис. 1. Применение СР в частотно-регулируемом электроприводе

Рассмотрим классы применения СР.

Фильтровые резисторы используются в составе RC-цепочек для уменьшения высокочастотных помех на шинах переменного тока. Возможно также их применение совместно с LC-цепями, настроенными на выделение токов определенных (нежелательных) гармоник сетевой частоты, генерируемых в процессе работы электропривода. При этом фильтровые резисторы поглощают и рассеивают мощность этих гармоник в [5, 6]. Фильтровые резисторы выбирают по допустимой средней мощности (импульсные перегрузки этих СР сравнительно невелики и обычно вполне достаточно стандартной перегрузочной способности «пятикратная мощность в течение пяти секунд»).

Резисторы для ограничения перенапряжений и разряда емкостей на шинах переменного тока «crowbar» служат для подавления кратковременных и длительных перенапряжений на шинах переменного тока [4, 5, 6]. СР «soft crowbar» ограничивают перенапряжения во время переходных процессов. Если же имеется длительное превышение напряжения, шина отключается от сети автоматическим выключателем (или контактором) и затем СР «hard crowbar» разряжает емкость шины до безопасного уровня напряжения [4, 5]. СР «crowbar» должны выдерживать значительные импульсные напряжения (между выводами СР), иметь высокую электрическую прочность изоляции и большую допустимую энергию, поглощаемую на интервалах времени порядка десятков мкс…единиц мс. При этом средняя мощность рассеивания может быть сравнительно невелика [4, 5]. Она определяется интенсивностью протекания переходных процессов, величиной емкостей на шинах и требуемым временем снижения напряжений до безопасных значений.

Резисторы для ограничения пускового тока входного выпрямителя и резисторы для первоначального заряда фильтрового (накопительного) конденсатора на шине постоянного тока имеют сходное назначение: обеспечивают приемлемую, безопасную величину тока через вентили входного выпрямителя и накопительный конденсатор при подключении преобразователя к питающей сети, а также демпфируют этот процесс [4]. После завершения заряда конденсатора, резисторы шунтируются замыкающимися контактами. Эти СР могут иметь весьма небольшую допустимую среднюю мощность, но должны надежно поглощать значительную энергию (примерно равную энергии заряжаемого конденсатора на шинах постоянного тока 0,5*Cнакопит*(Uпост макс)2) в течение короткого времени порядка единиц…десятков мс.

Резистор для разряда накопительного конденсатора подключается параллельно конденсатору для обеспечения безопасности[4]. После отключения преобразователя от питающей сети, этот СР обеспечивает гарантированное снижение напряжения на шине постоянного тока до безопасного значения в течение нормированного (не большого) интервала времени. Этот СР проектируется по средней мощности рассеивания Pсредн = (Uпост макс)2/Rразр. В свою очередь Rразр выбирается достаточно малой величины для получения приемлемого времени разряда конденсатора. При большой емкости конденсатора требуется разрядный СР значительной мощности.

Токоизмерительный резистор Rизм служит для контроля и измерения тока в силовой цепи по величине падения напряжения: I = Uизм/Rизм. Этот СР должен иметь весьма малое номинальное сопротивление (номинальное падение напряжения на Rизм порядка нескольких десятков мВ), высокую начальную точность и стабильность при изменении внешних условий и в течение срока службы преобразователя, а также небольшую величину паразитной индуктивности резистора. Более подробно вопросы применения токоизмерительных резисторов в силовых преобразователях рассмотрены в статье [7].

Тормозной резистор служит для поглощения кинетической энергии электропривода при необходимости его быстрого торможения. Соответственно, наиболее важным требованием к этому СР является большая допустимая энергия, поглощаемая на интервале торможения (обычно порядка единиц…десятков с). Если торможения привода происходят достаточно часто и с большим изменением скорости, то тормозной СР должен быть способен рассеивать значительную среднюю мощность. Стандартное соотношение (Pимп торм/Pсредн) для тормозных СР равно 10 [5].

Балансные резисторы служат для выравнивания распределения напряжения между несколькими последовательно соединенными однотипными силовыми компонентами преобразователя (вентилями или конденсаторами). Последовательное соединение применяется, если величина допустимого напряжения одного компонента не достаточна для его надежной работы в составе преобразователя, а применить более высоковольтный тип технически невозможно или экономически нецелесообразно. Балансные СР отличаются сравнительно большой величиной сопротивления (единицы…десятки кОм) и должны иметь хорошую точность и стабильность. При этом требования по средней и импульсной мощности этих СР сравнительно невысокие.

Снабберные резисторы предназначены для ограничения выбросов напряжения и демпфирования высокочастотных колебаний, возникающих при коммутациях силовых ключей в составе преобразователей [4, 6, 8]. Имеется несколько характерных схем применения снабберных СР, обычно совместно с конденсаторами [8]. По величине сопротивления требования к этим СР могут варьироваться в очень широком диапазоне — доли Ом…десятки кОм. Но во всех случаях они должны иметь очень большую допустимую импульсную мощность (при длительности импульсов сотни наносекунд…десятки микросекунд), предельно малую паразитную индуктивность и рассеивать значительную среднюю мощность.

Одним из лидеров среди производителей СР является компания TE Connectivity, более полувека выпускающая СР с торговой маркой CGS. Она располагает одним из наиболее широких наборов конструктивных и технологических решений СР, позволяющих производить низко- и высокоомные СР с различными величинами по начальной точности сопротивления, температурному коэффициенту и стабильности, с малой паразитной индуктивностью и различными вариантами корпусирования и монтажа [9]. Стандартные СР выпускаются на номинальную мощность до 2200 Вт и с напряжением изоляции до 12 кВ. В конструкции СР TE-Connectivity используются только лучшие материалы, что гарантирует их качество, надежность и долговечность. Эти СР массово поставляются на автомобильное производство, используются в инверторах на электровозах, в снабберных цепях тиристоров в энергосистемах и в качестве тормозных резисторов в мощных электроприводах [9]. Показательно, что их можно без ограничений применять в электрооборудовании лифтов и эскалаторов, а также на железнодорожном транспорте, т.е. они полностью соответствуют требованиям к системам, критическим по безопасности большого количества людей [4].

Среди всего многообразия стандартных СР, наиболее сбалансированные характеристики имеют резисторы в алюминиевом корпусе. В таблице 1 представлены основные серии СР в алюминиевом корпусе, выпускаемые TE Connectivity [9, 10].

Таблица 1. Стандартные СР в алюминиевом корпусе производства TE Connectivity

Наименование Pном, Вт1 Стандартный
теплоотвод,
Мощность без радиатора, Вт Диапазон
значений
сопротивления
Uраб макс, В2 Uизол, В3 Стабильность, %4
S, кв. см H, мм
HSA5 10 415 1 5,5 10 мОм…10 кОм 160 1400 1
HSA10 16 415 1 8 10 мОм…15 кОм 265 1400 1
HSA25 25 535 1 12,5 10 мОм…36 кОм 550 2500 1
KHSA25 25 535 1 12,5 10 мОм…36 кОм 550 3500 2
HSA50 50 535 1 20 10 мОм…100 кОм 1250 2500 1
KHSA50 50 535 1 25 10 мОм…100 кОм 1250 3500 2
HSC75 75 995 3 45 50 мОм…50 кОм 1400 5000 2
HSC100 100 995 3 50 50 мОм…100 кОм 1900 5000 2
HSC150 150 995 3 55 0,1 Ом…100 кОм 2500 5000 2
HSC200 200 3750 3 50 0,1 Ом…50 кОм 1900 5600 3
HSC250 250 4765 3 60 0,1 Ом…68 кОм 2200 5600 3
HSC300 300 5780 3 75 0,1 Ом…82 кОм 2500 5600 3
1 — Номинальная мощность резисторов (в продолжительном режиме работы) со стандартным теплоотводом (нормируется эффективная площадь S и толщина теплоотвода H) без обдува. Применение радиаторов с меньшим тепловым сопротивлением, чем у стандартного теплоотвода, возможно и целесообразно (рекомендуется), что улучшает характеристики резисторов (главным образом надежность и стабильность), но, в любом случае, не следует превышать номинальную мощность. Также рекомендуется использование теплопроводящей пасты (компаунда) для уменьшения теплового сопротивления между корпусом резистора и радиатором, что особенно эффективно для резисторов большой мощности.
2 -Максимально допустимое напряжение между выводами резистора (постоянное или действующее значение для переменного тока).
3 — Максимально допустимое напряжение между выводами резистора и его корпусом (пиковое значение переменного напряжения).
4 — Предельное значение возможного изменения сопротивления резистора за 1000 часов работы с номинальной нагрузкой. Если уменьшить нагрузку до 0,7*Pном, можно снизить скорость старения вдвое. Если уменьшить нагрузку до 0,5*Pном — скорость старения уменьшится в четыре раза.

Исполнение резисторов серии HSC300 с жидкостным охлаждением позволяет удвоить их номинальную мощность (серия HS600).

Резисторы серий HSA5…HSA75 полностью заменяют более раннюю разработку (серии THS10THS75).

Серии резисторов HSX25 и HSX50 являются модификацией серий KHSA25 и KHSA50 с увеличенным значением длины пути по поверхности изоляторов выводов (до 10 мм). Они предназначены для работы в условиях повышенной загрязненности.

Сопротивление изоляции резисторов не менее 10 ГОм, а сразу после испытаний на влагостойкость — не менее 1 ГОм.

Резисторы стандартного исполнения выпускаются с допуском на отклонение величины сопротивления резистивного элемента от номинального значения ±5%. На заказ возможна поставка резисторов с допуском ±0,25%, ±0,5%, ±2%, ±3% и ±10%.

Температурный коэффициент сопротивления резисторов не более ±30*10-6/°C (для резисторов с сопротивлением менее 100 Ом — не более ±50*10-6/°C).

Резисторы имеют достаточно малые паразитные параметры — последовательную индуктивность и параллельную емкость. Например, резистор сопротивлением 44 Ом имеет индуктивность не более 3,8 мкГн и емкость 130 пФ. На заказ возможно изготовление резисторов с особенно малой величиной последовательной индуктивности (в обозначении серий добавляется префикс N (NHS…)).

СР производства компании TE Connectivity способны рассеивать большую мощность в продолжительном режиме работы при малых размерах и сравнительно невысокой температуре корпуса. Допустимая импульсная мощность этих СР при длительности перегрузки порядка единиц секунд Pимп = Pном*(25*с/tимп). Величины допустимой энергии, которую СР способны утилизировать на коротком интервале времени (микросекунды…единицы миллисекунд), сильно различаются для разных серий СР, а также — в зависимости от величины их сопротивления. В общем случае, наибольшую допустимую энергию имеют резисторы с сопротивлением менее 100 мОм, поскольку они наматываются самой толстой проволокой или шинкой, что дает большой объем резистивного элемента. В зависимости от серии СР (номинальной мощности), допустимая энергия низкоомных резисторов в коротком импульсе составляет 40 Дж (HSA5, HSA10, THS10, THS15)…320 Дж (HSC100HSC300, HSX50, KHSA50). Напротив, сравнительно высокоомные СР, резистивный элемент которых изготавливается из очень тонкой проволоки, имеют весьма малую допустимую величину поглощаемой энергии короткого импульса. Особенно это относится к сравнительно маломощным сериям СР (HSA5…HSA25), у которых она меньше 1 Дж при сопротивлениях более 100 Ом. Для применений, требующих большой допустимой энергии СР одновременно с повышенным значением сопротивления, наиболее интересна серия HSC250: величина допустимой энергии не опускается ниже 100 Дж в диапазоне сопротивлений 100 мОм…5 кОм, а в диапазоне 200 мОм…25 Ом она больше 1000 Дж. Впрочем, и другие серии СР HS выглядят в этом отношении сравнительно неплохо. Для диапазона сопротивлений свыше 10 кОм наибольшую допустимую энергию, утилизируемую в коротком импульсе, обеспечивают СР серий HS600, HSC300, HSX50, KHSA50 [10].

Отличные технические характеристики, надежность и качество СР в алюминиевом корпусе производства компании TE Connectivity обеспечивают их широкое применение. Из рассмотренных выше классов применения СР в составе частотно регулируемого электропривода, эти резисторы используются практически везде, разве что кроме задачи измерения тока [10]. Они выделяются очень высокой удельной мощностью, работоспособностью при жестких внешних воздействиях, стойкостью к перегрузкам и циклическим нагрузкам [9].

Литература

 

 

 

1. Врублевский Л.Е. и др. Силовые резисторы/Врублевский Л.Е., Зайцев Ю.В., Тихонов А.И.//Энергоатомиздат, 1991, 256 с.

2. Шейко П. Трансформаторы высокого напряжения. Повреждения вследствие коммутационных перенапряжений//Новости электротехники, №1 (79), 2013.

3. Титенков С. Четыре режима заземления нейтроли в сетях 6-35 кВ. Изолированную нейтраль объявим вне закона//Новости электротехники, №5 (23), 2003.

4. Power filtering and resistive solutions for elevators and escalators. Resistive solutions for railway applications. Literature No.4-1773460-6. TE-Connectivity, 2011.

5. Материалы (сайта) фирмы Cressal Resistors.

6. Энергетическая электроника: Справочное пособие: Пер. с нем./Под ред. Лабунцова В.А.//Энергоатомиздат, 1987, 464 с.

7. Савельев А. Резисторы для силовой электроники//Силовая электроника, №1, 2005, с. 4-7.

8. Уильямс Б. Силовая электроника: приборы, применение, управление. Справочное пособие: Пер. с англ.// Энергоатомиздат, 1993, 240 с.

9. Passive components. Resistor catalogue. Literature No.4-1773442-9. TE-Connectivity, 2006.

10. Aluminium housed power resistors. Type HS series. Literature No.1773035. TE-Connectivity, 2011.

Получение технической информации, заказ образцов, поставка — e-mail: passiv.vesti@compel.ru

•••

Наши информационные каналы