Приручаем колебания: проблемы с емкостной нагрузкой
15 декабря 2018
Статья является частью руководства, посвященного практическим аспектам и особенностям проектирования электроники с использованием операционных усилителей (ОУ) – от выбора типа ОУ до тайных приемов опытного разработчика и хитростей отладки. Руководство написано Брюсом Трампом, инженером-разработчиком с почти тридцатилетним стажем, успевшим до Texas Instruments поработать в легендарной компании Burr-Brown. В настоящее время Трамп является ведущим блогером информационного ресурса Texas Instruments “E2E” по аналоговой тематике и готовит к печати книгу об операционных усилителях.
Мы публикуем перевод руководства Трампа на нашем сайте регулярно – дважды в месяц.
Подписаться на получение уведомлений о публикации новых глав
Я оценивал устойчивость операционных усилителей, анализируя, каким образом фазовый сдвиг (его можно назвать также задержкой) в цепи обратной связи приводит к возникновению колебаний. Поднятая в статьях «Почему в схемах с ОУ возникают колебания: интуитивный взгляд на две наиболее частые причины» и «Приручаем нестабильный ОУ» проблема с устойчивостью при емкостной нагрузке довольно непроста.
Здесь главным источником проблем становится выходное сопротивление операционного усилителя с разомкнутой обратной связью (Ro), которое на самом деле не является резистором в буквальном смысле этого слова. Это эквивалентное сопротивление, зависящее от внутренней схемы ОУ. Невозможно изменить его без изменения самого операционного усилителя. Пусть CL – емкость нагрузки. При работе с такой емкостью вы автоматически получаете полюс, определяемый значениями Ro и CL. Полюс на частоте 1,8 МГц в контуре обратной связи 20 МГц операционного усилителя с G = 1 способен вызвать проблемы. Это хорошо видно на рисунке 32.

Рис. 32. Полюс 1,8 МГц в контуре обратной связи 20-МГц операционного усилителя с G = 1 (слева) вызывает нежелательные осцилляции
Существующие решения этой проблемы основаны на одном и том же принципе – они замедляют работу усилителя. Представьте: контур имеет фиксированную задержку, определяемую Ro и CL. Чтобы работать с такой задержкой, усилитель должен реагировать медленнее, чтобы не «проскакивать» требуемое значение выходного напряжения.
Хорошим способом замедления работы ОУ является увеличение коэффициента усиления. Более высокий коэффициент усиления уменьшает полосу пропускания усилителя с замкнутым контуром. На рисунке 33 показано, как OPA320 работает с той же емкостной нагрузкой 1 нФ, но с коэффициентом усиления 10. Реакция на ступенчатое изменение значительно улучшилась, но по-прежнему остается посредственной. Если увеличить коэффициент усиления до 25 и более – можно получить еще более достойный результат.

Рис. 33. Использование ОУ в схеме с коэффициентом усиления 10 уменьшает полосу пропускания усилителя с замкнутым контуром, однако улучшения не кардинальны
Есть еще один хитрый трюк. На рисунке 34 по-прежнему представлена схема с коэффициентом усиления 10, но с дополнительным конденсатором Cc, который еще больше замедляет работу ОУ, направляя ее в правильное русло. Если величина Cc окажется недостаточной – реакция схемы будет похожа на рисунок 33. При слишком большой емкости Cc можно столкнуться с неприятностями, показанными на рисунке 32.

Рис. 34. Использование той же схемы и дополнительного конденсатора Cc 12 пФ, включенного параллельно с резистором обратной связи, позволяет добиться идеального отклика
Получение оптимальной компенсации – это задача, которую можно решить с помощью анализа Боде. Конечно, в преодолении обозначенных проблем серьезно поможет интуиция, однако для перехода на качественно новый уровень при расчете цепей компенсации без господина Боде не обойтись.
Список ранее опубликованных глав
- Диапазоны входных и выходных рабочих напряжений ОУ. Устраняем путаницу
- Что нужно знать о входах rail-to-rail
- Работа с напряжениями близкими к земле: случай однополярного питания
- Напряжение смещения и коэффициент усиления с разомкнутым контуром обратной связи — двоюродные братья
- SPICE-моделирование напряжения смещения: как определить чувствительность схемы к напряжению смещения
- Где выводы подстройки? Некоторые особенности выводов коррекции напряжения смещения
- Входной импеданс против входного тока смещения
- Входной ток смещения КМОП- и JFET-усилителей
- Температурная зависимость входного тока смещения и случайный вопрос на засыпку
- Использование входных резисторов для устранения входного тока смещения. Действительно ли они нужны?
- Использование входных резисторов для устранения входного тока смещения. Действительно ли они нужны?
- Почему в схемах с ОУ возникают колебания: интуитивный взгляд на две наиболее частые причины
- Приручаем нестабильный ОУ
Перевел Вячеслав Гавриков по заказу АО КОМПЭЛ
Наши информационные каналы