Приручаем нестабильный ОУ

Статья является частью руководства, посвященного практическим аспектам и особенностям проектирования электроники с использованием операционных усилителей (ОУ) – от выбора типа ОУ до тайных приемов опытного разработчика и хитростей отладки. Руководство написано Брюсом Трампом, инженером-разработчиком с почти тридцатилетним стажем, успевшим до Texas Instruments поработать в легендарной компании Burr-Brown. В настоящее время Трамп является ведущим блогером информационного ресурса Texas Instruments “E2E” по аналоговой тематике и готовит к печати книгу об операционных усилителях.

Мы публикуем перевод руководства Трампа на нашем сайте регулярно – дважды в месяц.

Подписаться на получение уведомлений о публикации новых глав

В предыдущей публикации я рассмотрел две наиболее распространенные причины возникновения колебаний или нестабильности в схемах с операционными усилителями. При этом исходной причиной этих негативных явлений была задержка или сдвиг фазы в цепи обратной связи.

Простой неинвертирующий усилитель может быть неустойчивым или иметь чрезмерное перерегулирование и осцилляции, если сдвиг фазы или задержка, создаваемые входной емкостью ОУ (плюс некоторая паразитная емкость) совместно с сопротивлением цепи обратной связи, слишком велики (рисунок 29).

Рис. 29. Чрезмерное превышение выходного сигнала и осцилляции указывают на возможную неустойчивость

Рис. 29. Чрезмерное превышение выходного сигнала и осцилляции указывают на возможную неустойчивость

Можно немного улучшить ситуацию за счет уменьшения паразитной емкости на инвертирующем входе, например, уменьшив площадь проводника на печатной плате. Однако для конкретного операционного усилителя входная емкость (дифференциальная и синфазная) представляет собой фиксированное значение – с ней ничего поделать нельзя. Тем не менее, можно пропорционально снизить сопротивление резисторов в цепи обратной связи, чтобы сохранить коэффициент усиления без изменений.

Уменьшение сопротивлений резисторов ОС перемещает полюс, созданный входной емкостью, в область более высоких частот и снижает постоянную времени. В этом примере уменьшение сопротивлений резисторов до 5 кОм и 10 кОм позволяет добиться явного улучшения, но все же сохраняет примерно 10-процентное перерегулирование и колебания. Такое решение также увеличивает нагрузку на операционный усилитель, поэтому невозможно бесконечно идти по этому пути. Сумма двух резисторов – это нагрузка на ОУ, и она не должна быть также слишком низкой.

Лучшим решением проблемы в данном случае, скорее всего, будет использование дополнительного конденсатора Cc, подключенного параллельно с R2 (рисунок 30). Если R1 × Cx = R2 × Cc, то делитель напряжения оказывается скомпенсированным, и коэффициент импеданса является постоянным для всех частот. В таком случае фазовый сдвиг или задержка в цепи обратной связи будет мала.

Рис. 30. Конденсатор Cc, подключенный параллельно с R2, позволяет избежать фазового сдвига в цепи обратной связи

Рис. 30. Конденсатор Cc, подключенный параллельно с R2, позволяет избежать фазового сдвига в цепи обратной связи

Вы можете сравнить цепь обратной связи в ОУ с компенсированным щупом в осциллографе (рисунок 31). Там используется та же концепция. Переменный конденсатор в щупе позволяет выполнять выравнивание постоянных времени. Можно заметить, что отклик этого щупа никогда не выглядит неустойчивым, даже если он настроен неправильно. Почему? Потому что он не входит в цепь обратной связи.

Рис. 31. Цепь обратной связи очень похожа на компенсированный щуп в осциллографе

Рис. 31. Цепь обратной связи очень похожа на компенсированный щуп в осциллографе

В схеме на рисунке 30, как и при калибровке щупа осциллографа, может потребоваться подстройка конденсатора Cc. Точная величина Cx не всегда известна из-за наличия различных паразитных емкостей. Кроме того, может понадобиться настройка реакции схемы в соответствии с заданными требованиями, например, с небольшим перерегулированием для повышения скорости и пропускной способности.

Другой распространенной причиной неустойчивости является емкостная нагрузка операционного усилителя. Опять же, в этом случае возникает фазовый сдвиг в цепи обратной связи (задержка в цепи обратной связи), который является корнем проблемы. Здесь сложность заключается в том, что выходной резистор разомкнутого контура представлен внутренним сопротивление операционного усилителя. Невозможно включить компенсирующую емкость параллельно с этим резистором. На самом деле это не совсем резистор, это – эквивалентное выходное сопротивление внутренней схемы ОУ.

Вернитесь к схеме вашего последнего неустойчивого усилителя. Можете ли вы объяснить причину проблем с задержкой обратной связи?

Список ранее опубликованных глав

  1. Диапазоны входных и выходных рабочих напряжений ОУ. Устраняем путаницу
  2. Что нужно знать о входах rail-to-rail
  3. Работа с напряжениями близкими к земле: случай однополярного питания
  4. Напряжение смещения и коэффициент усиления с разомкнутым контуром обратной связи — двоюродные братья
  5. SPICE-моделирование напряжения смещения: как определить чувствительность схемы к напряжению смещения
  6. Где выводы подстройки? Некоторые особенности выводов коррекции напряжения смещения
  7. Входной импеданс против входного тока смещения
  8. Входной ток смещения КМОП- и JFET-усилителей
  9. Температурная зависимость входного тока смещения и случайный вопрос на засыпку
  10. Использование входных резисторов для устранения входного тока смещения. Действительно ли они нужны?
  11. Встроенная схема компенсации токов смещения в ОУ с биполярными входами
  12. Почему в схемах с ОУ возникают колебания: интуитивный взгляд на две наиболее частые причины
•••

Наши информационные каналы

О компании Texas Instruments

В середине 2001 г. компании Texas Instruments и КОМПЭЛ заключили официальное дистрибьюторское соглашение, которое явилось результатом длительной и успешной работы КОМПЭЛ в качестве официального дистрибьютора фирмы Burr-Brown. (Как известно, Burr-Brown вошла в состав TI так же, как и компании Unitrode, Power Trend и Klixon). С этого времени компания КОМПЭЛ получила доступ к поставке всей номенклатуры производимых компанией TI компонентов, ...читать далее

Товары
Наименование
OPA320AQDBVRQ1 (TI)
OPA320SAIDBVT (TI)
OPA320AIDBV (TI)
OPA320AQDBVTQ1 (TI)
OPA320AIDBVR (TI)
OPA320SAIDBV (TI)
OPA320AIDBVT (TI)
OPA320SAIDBVR (TI)