№9 / 2015 / статья 8

Зарядка аккумулятора с помощью USB: роль детектора типа зарядного устройства

Мухамед Исмаил (Maxim Integrated)

С использованием интегральных микросхем детектора заряда разъем USB становится универсальным компонентом для портативных устройств. Соблюдение спецификации BC1.2 (BC1.2 – Battery Charging Revision 1.2 – спецификация зарядного устройства аккумуляторной батареи вариант 1.2) обеспечивает ясность и простоту реализации технологии. Обилие возможностей интегральных схем детектора заряда делает их чрезвычайно привлекательными при разработке портативной электроники. Компания Maxim Integrated предлагает многофункциональные детекторы зарядного устройства MAX14576/MAX14636/MAX14637 и MAX14656.

Что, кроме обильных порций кофе, помогает уменьшить время выхода продукции на рынок, снизить стоимость, сконцентрироваться на циклах разработки инноваций? Подсказка: стандартизация. Стандарты, определяющие протоколы и эксплуатационные характеристики, повлияли на все аспекты технологии: размеры корпуса устройства, расположение выводов, информационные и коммуникационные интерфейсы, драйвера программного обеспечения, разъемы, способ распространения программного продукта, соблюдение экологических норм, испытательные приспособления. Этот список можно продолжать без конца. Чем подробнее описание, тем лучше оснащены разработчики для определения продуктов, которые следует вывести на рынок. Если есть какие-либо сомнения по поводу необходимости строго оговоренных стандартов, отправляйтесь в два любых магазина одежды и купите рубашки с одним и тем же размером.

Лучшие стандарты растут вместе с технологией. Стандарты пересматриваются, и затем в них отражается усложнение промышленности, в то время как необходимо поддерживать уже укоренившуюся практику. USB порт – прекрасный пример универсального стандарта. Первоначально предполагалось стандартизировать разъемы на ведущем компьютере, затем была расширена спецификация USB с разрешением горячей замены электроники (стандарт USB-OTG – “On the Go”) как для ведущего, так и для периферийного устройства. Спецификация снова эволюционировала с введением «Спецификации зарядки аккумуляторной батареи с помощью USB» [USB Battery Charging Specification, 1], отразившим невероятный бум мобильных телефонов и других портативных устройств с портом USB. В настоящее время стандарт USB проходит очередной виток эволюции с новой спецификацией USB 3.1 с инновационным симметричным разъемом типа С. Из-за способности идти в ногу со временем [2], порт USB в настоящее время можно найти повсеместно, где используются заряжаемые устройства.

Поддержка такого устойчивого стандарта, как USB, может влиять даже на политику правительства. В июне 2009 Европейская Комиссия опубликовала памятку, предполагающую разрешить использование универсального зарядного устройства для каждого мобильного телефона, который имеет разъем микро-USB и опирается в значительной степени на ВС1.2. [3] В ответ крупнейшими производителями мобильной электроники, такими как Apple, LG, Samsung и Sony Ericsson, а также многими другими [4] был подписан меморандум о взаимопонимании (MoU – memorandum of understanding). Ассоциация GSM (GSMA), которая организует мировой мобильный конгресс (Mobile World Congress) и охватывает более 220 стран, также анонсировала намерение стандартизировать зарядное устройство мобильных телефонов с USB-разъемом [5]. Корейская ассоциация телекоммуникационных технологий (Korean Telecommunications Technology Association) и китайское министерство промышленности и информационных технологий (Chinese Ministry of Industry and Information Technology) выпустили технические требования к стандартизации зарядного устройства мобильного телефона [6]. Даже международный телекоммуникационный союз (International Telecommunication Union), специализированное учреждение в рамках Организации Объединенных Наций, опубликовал ITU-T L.1000 – рекомендации к адаптации универсального зарядного устройства на основе предложений GSMA, Евросоюза и Китая [7]. Обновление USB 2.0, в которое добавлены положения о передачи энергии, введение стандарта USB 3.1 в 2013 году и нового стандартного разъема Type-C в 2014 году будут продолжать оказывать сильное влияние на стандарты USB.

Детектор зарядного устройства и порты в BC1.2

Почему комитеты по стандартам и правительство выбрало для унификации USB разъем и протоколы, изложенные в BC1.2? Создание общего стандарта позволит добиться совместимости, оптимальной производительности, безопасности любых устройств, использующих USB. Спецификация оговаривает, сколько мощности может передать любой порт, а также указывает рациональный путь определения количества переданной энергии для портативных устройств. Таким образом, разработчик любого портативного оборудования может обеспечить совместимость с как можно большим числом USB. Производители будут знать, как наилучшим образом применять USB, и могут предвидеть значения напряжений и токов, прилагаемых к USB. Учитывая эти данные, можно осуществлять проектирование без риска электрических перегрузок. Наконец, возрастающее значение тока заряда, используемого устройством, значительно сокращает требуемое для процесса заряда время. Следовательно, детектор зарядного устройства – важная особенность, которая должна быть заложена во всех заряжаемых устройствах, использующих порт USB.

Прежде чем обсуждать протокол обнаружения устройств, важно знать различия среди существующих спецификаций USB. Наиболее распространенная спецификация USB 2.0 поддерживает ток заряда не более 500 мА. ВС1.2 оговаривает три различных типа портов: стандартный порт для обмена (SDP – standard downstream port), выделенный порт для заряда (DCP – dedicated charging port) и порт для обмена и заряда (CDP – charging downstream port).

SDP – классический USB-порт. В дополнение к коммуникации USB обеспечивает ток 100 мА для периферийных подключенных устройств, причем ток может быть увеличен до 500 мА. Большинство портов, как правило, не имеют этого предела тока, и большие токи не гарантируются. DCP не поддерживает обмен данными, но обеспечивает зарядный ток 500 мА без распознавания порта. CDP поддерживает обмен данными USB и высокий ток заряда; присутствует внутренняя схема, которая переключается на этапе определения заряжаемого устройства. Некоторые производители электроники разработали свои собственные схемы идентификации зарядного устройства в дополнение к типам USB-портов, указанных в спецификации. Вариации этих схем добавляют еще один слой технологии обнаружения зарядного устройства, который нельзя упускать из вида.

Процесс определения зарядного устройства

Процесс определения зарядного устройства, согласно спецификации BC1.2, состоит из пяти базовых этапов:

  1. Рис. 1. Контакты разъема USB и обнаружение данных соединения

    Рис. 1. Контакты разъема USB и обнаружение
    данных соединения

    Определение VBUS. Для обеспечения правильного согласования любых возможных подключенных устройств и USB-порта, выводы VBUS и GND на разъеме должны быть длиннее, чем выводы D+ и D-. Это гарантирует необходимую последовательность соединения контактов (см. рисунок 1). Таким образом, перед тем, как произойдет распознавание, устройство должно сначала проконтролировать наличие VBUS.

  2. Обнаружение данных соединения (DCD – data contact detection). Как только валидация VBUS завершена, портативному устройству (ПУ) необходимо гарантировать соединение контактов данных перед тем, как начнется обнаружение. ПУ может неправильно определить наличие зарядного устройства, если решение было преждевременным, то есть до образования соединения контактов данных.

Для выполнения DCD периферийное устройство должно подключить источник тока величиной от 7 до 13 мкА (опорное напряжение 3,3 В) к D+ и проконтролировать напряжение. Этот диапазон тока выбран таким образом, чтобы поддерживать необходимый уровень напряжения для всех логических элементов при допустимом отклонении величин сопротивлений, оговоренных в спецификации. Если D+ не подключен, напряжение будет иметь высокий логический уровень. Если подключен, то на D+ будет считываться низкий логический уровень, несмотря на тип порта. Если соединение с контактами данных не терялось после односекундного таймаута, конечное устройство предполагает, что DCD состоялось.

  1. Первичное определение зарядного устройства. На этом этапе конечное устройство различает типы портов с возможностью тока заряда более 500 мА (CDP и DCP) или менее 500 мА (SDP). После отключения источника тока фазы DCD конечное устройство подключает источник напряжения от 0,5 до 0,7 В на D+ и подает ток от 25 до 175 мкA на D-. Если в данный момент выполняется режим DCP или CDP, то на D- появится уровень от 0,5 до 0,7 В. Если SDP, то напряжение на D- снизится до нуля. Компараторы конечного устройства сравнивают напряжение D- с уровнем от 0,25 до 0,4 В. Если напряжение D- выше 0,4 В , но ниже чем логический низкий уровень 0,8 В, то конечное устройство делает вывод о том, что представлен порт зарядного устройства.
  2. Вторичное определение зарядного устройства. После отключения источника напряжения и тока из предыдущего шага конечное устройство должно отличить CDP от DCP. Для достижения этой цели выполняется предыдущий тест в обратном порядке. То есть, на D- подключается источник напряжения 0,5…0,7 В и на D+ подается ток 50 мкA. Если выполняется режим DCP, то на D+ появится тестовое напряжение от 0,5 до 0,7 В. Если CDP, то на D+ напряжение будет нулевым.
  3. CDP: ограничение зарядного тока. Так как CDP поддерживает и обмен данными, и заряд высоким током, то необходимо отметить последнее различие. Ввиду большого значения протекающего в USB-кабеле тока, разница между землей хоста и землей подключенного устройства должна быть ограничена на допустимом уровне смещения не более 375 мВ.

Логическая схема процедуры определения типа зарядного устройства приведена на рисунке 2.

Рис. 2. Обобщенная процедура определения зарядного устройства в соответствии со спецификацией BC1.2

Рис. 2. Обобщенная процедура определения зарядного устройства в соответствии со спецификацией BC1.2

Зарядные устройства, не совместимые с ВС1.2, отличаются у разных производителей. Многие из зарядных устройств собственной разработки идентифицируют себя для конечного устройства посредством уровня напряжения, получаемого резистивным делителем между шиной VBUS и землей. В зависимости от уровня отклонения, требуемого схемой обнаружения зарядного устройства, может быть добавлен контур чувствительности для обнаружения уровней напряжений на D + и D-, и таким образом становится возможным идентифицировать различные зарядные спецификации производителя.

Технология определения зарядного устройства

Интегральная схема обнаружения USB-зарядного устройства – это микросхема, которая реализует многие функции и тонкости, связанные с определением зарядного устройства в соответствии со спецификацией ВС1.2. Также возможно реализовать схему определения на дискретных элементах. Однако количество компонентов, место на печатной плате и время, потраченное на создание дискретной системы, резко возрастает.

Добавление специальной микросхемы для определения устройства заряда требует дополнительного места на печатной плате, поэтому производители часто сочетают другие необходимые или желательные функции в одном корпусе. Следовательно, микросхема определения зарядного устройства высокой степени интеграции обладает множеством дополнительных функций, таких как встроенные ключи для работы USB или UART/аудио, последовательные интерфейсы управления, защита от перенапряжения (OVP – overvoltage protection), поддержка USB OTG, возможность заряда Li+ батарей или даже способность нумерации USB.

Разработчики, подбирающие детектор зарядного устройства, который можно установить в уже существующий продукт с минимальным количеством дополнительных компонентов и местом на печатной плате, должны заинтересоваться семейством микросхем MAX14576/MAX14636/MAX14637. Этот класс детекторов зарядных устройств питается непосредственно от шины USB VBUS , так что нет необходимости организовывать дополнительный источник питания. Детекторы оснащены внутренними переключателями SPST, которые открываются, когда выполняется определение зарядного устройства, и закрываются, когда включена передача данных через USB. Каждое устройство имеет порты ввода/вывода с открытым коллектором для сигнализации статуса разрешения зарядки или передачи данных. Некоторые версии детектора зарядного устройства имеют совместимый с Apple® порт детектора зарядки в дополнение к спецификации BC1.2. На рисунке 3 показан пример схемы обнаружения, которая обрабатывает протокол детектирования. Для такой схемы требуется меньше ресурсов основного процессора, и нет необходимости в серьезных изменениях в существующем проекте.

Рис. 3. Схема включения детектора зарядки MAX14636

Рис. 3. Схема включения детектора зарядки MAX14636

За последние несколько лет произошел лавинообразный рост на рынке смартфонов. Список их функционала продолжает увеличиваться, а габариты – уменьшаться. Тщательное планирование и использование высокоинтегрированных решений необходимы для сокращения спецификации. Так, например, мобильный телефон использует один разъем для зарядного устройства; подключения к персональному компьютеру; подключения внешних аксессуаров; воспроизведения аудио. Для осуществления всех этих задач в компактном исполнении системные разработчики могут применить микросхему определения заряда MAX14656 (рисунок 4).

Рис. 4. Применение детектора заряда MAX14656 в смартфонах

Рис. 4. Применение детектора заряда MAX14656 в смартфонах

Эта универсальная схема детектора зарядного устройства автоматически определяет разницу между BC1.2-совместимыми портами и поддерживает определение Apple-совместимых зарядных устройств (то есть 500 мА, 1 А, 2,1 А). Эти устройства имеют интегрированные DPDT-переключатели, которые позволяют использовать шины D+ и D- для совместного использования высокоскоростным USB-приемопередатчиком, аудиовыходом и даже внутренним UART. Используя I2C-интерфейс, встроенный процессор читает, подключено ли зарядное устройство, и переконфигурирует внутренние ключи для соответствующего режима. Например, рассмотрим одиночный детектор зарядного устройства со встроенным OVP на шине VBUS, с защитой от электростатических разрядов на линии передачи данных и посадочным местом 1,65х1,65 мм. Данная микросхема добавит одиночному разъему гибкости применения в системах с ограниченными габаритами.

Перспективы для устройств портативной электроники

Технология определения зарядного устройства достаточно универсальна, так как основные функции детектора зарядного устройства могут быть использованы совместно с другими функциями для достижения высокой степени интеграции при разработке портативной электронной техники. Другие решения сочетают в одном корпусе детектор зарядного устройства с контроллером заряда Li+ аккумуляторных батарей. Некоторые комбинируют детектор зарядного усторойства и самонумерацию USB. Сегодня новые микросхемы детекторов зарядного устройства автоматически осуществляют мониторинг циклов заряда батареи в соответствии с BC1.2, вместо дополнительной загрузки встроенного процессора с ручной юстировкой суммарного тока, протекающего за определенный в спецификации временной интервал.

Когда объединяются функции детектора зарядного устройства и заряда, получается интеллектуальное ключевое управление аккумуляторной батареей. Эта технология позволяет автоматически переключаться между аккумуляторной батареей и зарядным устройством, когда происходит процесс заряда. Следовательно, некоторые микросхемы детекторов зарядного устройства могут обеспечить как зарядку батареи, так и полный ток нагрузки. Устройства, которые поддерживают эти функции, снабжены также терморегулированием тока для защиты от опасных высоких температур, возникающих в результате одновременного заряда аккумулятора и обеспечения тока нагрузки. Благодаря интеграции детектора и зарядного устройства, системный разработчик может уделить больше внимания конечному применению продукта и меньше беспокоиться по поводу вопросов, связанных с процессом заряда.

Тем временем спецификация USB BC1.2 продолжает стимулировать электронную промышленность, обеспечивая стандарт, который производители могут брать за основу. Большое количество BC1.2-совместимых зарядных устройств уже доступны, и со временем объемы будут только увеличиваться. Уже один этот факт делает применение разъема USB в портативном устройстве привлекательным вариантом. При использовании микросхемы обнаружения зарядного устройства разъем USB на портативном устройстве становится универсальным компонентом. Соблюдение спецификации BC1.2 поддерживает ясность и простоту в реализации технологии. При разработке компактного и портативного изделия применение микросхемы детектора зарядного устройства позволяет увеличить степень интеграции за счет обширного списка сопутствующих функций.

 

Литература

  1. This specification is identified now as BC1.2; see www.usb.org/developers/docs/devclass_docs/;
  2. The phrase, “keeping up with the Joneses,” is an American English idiom. For some background on the history and evolving meaning of the phrase, see the Wikipedia entry at http://en.wikipedia.org/wiki/Keeping_up_with_the_Joneses. Also The Phrase Finder at www.phrases.org.uk/meanings/216400.html;
  3. See http://europa.eu/rapid/press-release_MEMO-09-301_en.htm;
  4. See www.usb.org/press/USB-IF_Press_Releases/CENELEC_USB-IF.PDF. Also http://europa.eu/rapid/press-release_MEMO-09-301_en.htm;
  5. Mobile-industry-unites-to-drive-universal-charging-solution-for-mobile-phones;
  6. See China Communications Standards Association, «Technical Requirements and Test Method of Charger and Interface for Mobile Telecommunication Terminal Equipment» (CCSA YD/T 1591-2006, later updated to YD/T 1591–2009). Also Telecommunications Technology Association of South Korea, «Standard on I/O Connection Interface of Digital Cellular Phone» TTAS.KO-06.0028 released in March 2001. Later updated in 2002 (/R2), and in 2007 (/R4);
  7. «Press Release: Universal phone charger standard approved-One-size-fits-all solution will dramatically cut waste and GHG emissions». Itu.int. 22 October 2009. Retrieved 4 November 2009, at www.itu.int/newsroom/press_releases/2009/49.html.

Получение технической информации, заказ образцов, заказ и доставка.

MAX17509_NE_06_15_opt

Наши информационные каналы

Теги: ,
Рубрики:

О компании Maxim Integrated

Компания Maxim Integrated является одним из ведущих разработчиков и производителей широкого спектра аналоговых и цифро-аналоговых интегральных систем. Компания была основана в 1983 году в США, в городе Саннивэйл (Sunnyvale), штат Калифорния, инженером Джеком Гиффордом (Jack Gifford) совместно с группой экспертов по созданию микроэлектронных компонентов. На данный момент штаб-квартира компании располагается в г. Сан-Хосе (San Jose) (США, Калифорния), производственные мощности (7 заводов) и ...читать далее