Методы снижения пусковых токов импульсных источников питания

18 мая 2020

телекоммуникациисистемы безопасноститерминалы продажсветотехникаавтоматизацияуниверсальное применениеMEAN WELLстатьяисточники питанияAC-DCисточники питанияпусковой токисточник питания на DIN-рейку

Александр Русу (г. Одесса)

Одна из главных проблем использования импульсных источников питания в светодиодных осветительных системах – ограничение пусковых токов, способных вывести эти системы из строя. Модульные решения, предусматриваюшие ограничение этих токов, предлагает компания MEAN WELL, а дискретные – для малосерийной продукции или индивидуальной разработки – сам автор статьи.

Маломощные импульсные источники питания (ИП) всегда пользовались стабильным спросом на рынке электроники – в системах промышленной автоматики, контроля доступа, пожарной безопасности и многих других. В последнее время этот список пополнился устройствами интернета вещей, умного дома и домашней автоматизации.

До недавнего времени использование ИП, независимо от того, являлись ли они универсальными блоками общего применения или разрабатывались для конкретного устройства, не вызывало особых технических проблем, но с началом эпохи светодиодного освещения ситуация изменилась не в лучшую сторону. Активное использование недорогих 12-вольтовых светодиодных лент увеличило число ИП в системах освещения, в результате чего стали появляться сбои в системах электроснабжения, вплоть до выхода оборудования из строя.

Суть проблемы заключается в значительной величине пускового тока (Inrush Current), возникающего в момент подключения блока питания к сети. Несмотря на то, что в каждом ИП приняты меры для его ограничения, все равно в большинстве устройств его величина может в десятки раз превышать ток, потребляемый при максимальной нагрузке. В результате одновременное включение нескольких ИП может приводить к срабатыванию защиты от короткого замыкания и вынуждает устанавливать автоматические выключатели либо с большим током, либо с большим временем срабатывания. Кроме того, при частом включении осветительных приборов резко уменьшается срок службы коммутирующих устройств – выключателей или реле, поскольку из-за чрезвычайно большого коммутируемого тока у них быстро прогорают контакты.

Хотя эта проблема не нова, до недавнего времени каких-либо готовых, а главное – доступных решений практически не было. Это и послужило поводом рассмотреть имеющиеся на рынке устройства для уменьшения пусковых токов, а также несколько доступных способов самостоятельного устранения этой проблемы. 

Технические характеристики источников питания

На сегодняшний день создать ИП мощностью до 1 кВт не является сложной технической задачей. Доступность элементной базы и большое количество наработок в этой области позволяют в сжатые сроки наладить производство источников питания на основе известных компонентов и по известным рекомендациям. Неудивительно, что схемотехника, технические характеристики и внешний вид недорогих выпрямительных устройств как ведущих мировых производителей, так и малоизвестных компаний очень схожи.

Одними из недорогих источников питания, часто используемыми для питания светодиодных лент, являются модули серии LRS производства компании MEAN WELL (рисунок 1). При разработке данной линейки были использованы как последние достижения в области производства импульсных источников питания, так и самая современная элементная база, что позволило вывести ИП семейства LRS на современный технический уровень и обеспечить хорошее соотношение «цена/качество».

Рис. 1. Выпрямитель из семейства LRS

Рис. 1. Выпрямитель из семейства LRS

Ключевыми особенностями семейства LRS (таблица 1) являются возможность работы в универсальном диапазоне входных напряжений (85…264 B AC), компактный размер (высота профиля 1U – 30 мм), высокий КПД (до 91,2%) и малое потребление при отключении нагрузки (0,2…0,75 Вт). ИП семейства LRS имеют множество сертификатов, среди которых IEC/EN 60335-1 (PD3) и IEC/EN61558-1, 2-16. Все источники питания LRS проходят тестирование при 100% нагрузки и имеют трехлетнюю гарантию.

Таблица 1. Основные технические характеристики выпрямителей семейства LRS

Наименование Номинальная  выходная мощность, Вт Выходное напряжение, В Входное напряжение В AC Потребляемый ток при 230 В АС, А Стартовый ток при 230 В АС, А
LRS-35 35 5…48 85…264 0,42 45
LRS-50 50 3,3…48 85…264 0,56 45
LRS-75 75 5…48 85…264 0,85 65
LRS-100 100 3,3…48 85…264 1,2 50
LRS-150 150 12…48 85…132/170…264 1,7 60
LRS-150F 150 5…48 85…264 1,7 60
LRS-200 200 3,3…48 90…132/180…264 2,2 60
LRS-350 350 3,3…48 90…132/180…264 3,4 60

Одной из специфических особенностей светодиодного освещения является возможность установки оборудования в специализированных электрических шкафах, поэтому наряду с ИП в перфорированных корпусах на практике может возникнуть реальная потребность в модулях с форм-фактором, рассчитанном на установку на DIN-рейку. В этом случае следует обратить внимание на семейство HDR производства компании MEAN WELL, выпускаемое в малогабаритных пластмассовых корпусах (рисунок 2).

Рис. 2. Внешний вид выпрямителей семейства HDR производства Mean Well

Рис. 2. Внешний вид выпрямителей семейства HDR производства MEAN WELL

Несмотря на то, что выпрямители HDR изначально были спроектированы для использования в автоматизированных системах управления и имеют изоляцию с электрической прочностью вплоть до Class II, сфера их применения не ограничивается питанием только промышленных контроллеров. Благодаря широкому диапазону входных напряжений, хорошему уровню электробезопасности, высокому КПД и малому энергопотреблению при отключении нагрузки (не более 0,3 Вт) эти модули (таблица 2) можно с успехом применить в самых разнообразных приложениях, начиная от питания элементов сложных технологических линий и заканчивая тем же светодиодным освещением.

Таблица 2. Основные технические характеристики выпрямителей семейства HDR

Наименование Максимальная выходная мощность, Вт Выходное напряжение, В Входное напряжение, В AC Потребляемый ток при 230 В АС, А Стартовый ток при 230 В АС, А
HDR-15 15 5…48 85…264 0,25 45
HDR-30 36 5…48 85…264 0,48 25
HDR-60 60 5…48 85…264 0,8 60
HDR-100 100 12…48 85…264 1,6 70
HDR-150 150 12…48 85…264 1,6 70

Анализируя данные таблиц 1 и 2, можно увидеть, что у всех рассмотренных ИП пусковой ток в десятки раз превышает ток, потребляемый при максимальной нагрузке. Причем чем меньше мощность источника питания, тем больше это соотношение. Например, для самой маломощной из рассмотренных моделей – ИП HDR-15 пусковой ток (45 А), согласно технической документации, в 180 раз превышает максимальное значение во время работы (0,25 А). Для мощных выпрямителей это соотношение хоть и немного меньше, но все равно является достаточно большим. Абсолютный рекорд по величине пускового тока (70 А) принадлежит моделям HDR-150. При таком пусковом токе в момент включения устройства хоть и кратковременно, но будет потребляться около 15 кВт, что достаточно много даже для промышленного оборудования.

Ситуацию не спасает и введение в ИП корректора коэффициента мощности (ККМ). Если проанализировать технические характеристики модулей семейства RSP производства MEAN WELL (рисунок 3), отличающихся от рассмотренных выше выпрямителей LRS наличием активного корректора коэффициента мощности, то окажется, что их пусковые токи также превышают номинальные значения в 15…70 раз (таблица 3). Это, конечно, меньше, чем в модулях без ККМ, однако все равно много, даже несмотря на высокий коэффициент мощности (не менее 0,93).

Рис. 3. Выпрямитель семейства RSP производства Mean Well

Рис. 3. Выпрямитель семейства RSP производства MEAN WELL

Таблица 3. Основные технические характеристики выпрямителей семейства RSP

Наименование Максимальная выходная мощность, Вт Выходное напряжение, В Входное напряжение, В АС Потребляемый ток при 230 В АС, А Стартовый ток при 230 В АС, А
RSP-75 75 3,3…48 85…264 0,5 35
RSP-100 100 3,3…48 85…264 0,55 30
RSP-150 150 3,3…48 85…264 0,8 45
RSP-200 200 2,5…48 88…264 1,1 40
RSP-320 320 2,5…12 88…264 1,5 40
RSP-500 500 3,3…48 85…264 2,65 40

Причины появления пусковых токов

На сегодняшний день большинство ИП изготавливается по схеме с бестрансформаторным входом. Ключевыми элементами данной схемы являются выпрямитель, реализуемый чаще всего по мостовой схеме, и входной сглаживающий конденсатор (рисунок 4).

Рис. 4. Типовая схема входной цепи выпрямительного устройства с бестрансформаторным входом

Рис. 4. Типовая схема входной цепи выпрямительного устройства с бестрансформаторным входом

До включения блока питания конденсатор C1 полностью разряжен и напряжение на нем равно нулю, в то время как в рабочем режиме оно достигает амплитудного значения напряжения сети, равного, при входном напряжении 220 В, около 310 В. Поскольку напряжение на конденсаторе измениться мгновенно не может, то в момент включения схемы обязательно должен произойти бросок тока из-за необходимости заряда конденсатора фильтра.

Максимальное значение пускового тока зависит не только от электрических характеристик элементов схемы, но и от момента включения ее в сеть. Наихудшим случаем считается подключение к сети в моменты, когда ее напряжение равно амплитудным значениям. В этом случае к диодам выпрямителя VD1…VD4 прикладывается прямое напряжение около 310 В, и их ток ограничивается лишь активными сопротивлениями кристаллов, соединительных проводников и внутренним последовательным сопротивлением конденсатора. Очевидно, что если не принимать никаких мер, то начальное значение пускового тока может превысить 100 А даже при небольшой емкости конденсатора C1.

Несмотря на то, что выпрямительные полупроводниковые диоды VD1…VD4 обычно выдерживают подобные перегрузки, столь высокое значение тока может значительно сократить срок их службы и вывести из строя. Для предотвращения этого пусковой ток даже в маломощных схемах обычно ограничивается с помощью резистора, сопротивление которого выбирается таким, чтобы ток через диоды выпрямителя в самом худшем случае не превышал максимально допустимое значение для данного режима работы.

Однако последовательное включение сопротивления приводит к увеличению потерь, величина которых может оказаться недопустимо большой. Для исключения этого в выпрямителях вместо резистора чаще всего устанавливают термистор с отрицательным температурным коэффициентом сопротивления. В момент включения, когда сопротивление термистора велико, пусковой ток мал. После запуска источника питания ток, протекающий через термистор, разогревает его, что приводит к снижению его сопротивления и, как следствие, к уменьшению влияния на работу схемы. Несмотря на простоту, у такого способа есть один серьезный недостаток – при частой коммутации, например, когда ИП включается сразу после выключения, термистор не успевает остыть и ограничение пускового тока происходит не так эффективно.

Таким образом, в импульсных ИП, построенных по классическим схемам, пусковой ток ограничивается лишь на уровне, обеспечивающем безопасный режим работы выпрямительных диодов, поскольку использование иного решения приведет или к уменьшению КПД системы в целом, или к ее существенному удорожанию. Очевидно, что проблему пусковых токов в большинстве случаев необходимо решать другими способами.

Методы ограничения пусковых токов

При анализе схемотехники импульсных выпрямительных устройств с бестрансформаторным входом становится понятно, что одним из наилучших методов уменьшения пусковых токов является кратковременное увеличение сопротивления входной цепи в момент включения. Именно по такому пути пошла компания MEAN WELL, представив на рынке серию ограничителей пусковых токов семейства ICL (рисунок 5).

Рис. 5. Ограничители пусковых токов производства компании Mean Well

Рис. 5. Ограничители пусковых токов производства компании MEAN WELL

На сегодняшний день MEAN WELL предлагает своим клиентам четыре модели ограничителей с максимальным пусковым током 23 А (ICL-16R/L) и 48 А (ICL-28R/L), предназначенные для установки на DIN-рейку (модели с суффиксом R) или на шасси (модели с суффиксом L). Основными элементами модулей являются мощные токоограничивающие резисторы, реле и схема управления (рисунок 6). В момент включения контакты реле разомкнуты, и входной ток выпрямительных устройств протекает через резистор с сопротивлением R. Через некоторое время, определяемое схемой управления, на обмотку реле подается напряжение, и его контакты замыкают токоограничивающий резистор, подключая выпрямительные устройства непосредственно к сети.

Рис. 6. Структурная схема ограничителей ICL

Рис. 6. Структурная схема ограничителей ICL

Время срабатывания реле определяется схемой управления и составляет 300 мс для моделей ICL-16R/L и 150 мс для ICL-28R/L (таблица 4), что равно, соответственно, 15 и 7,5 периодам изменения напряжения сети с частотой 50 Гц. Этого времени вполне достаточного для заряда конденсаторов входных фильтров, поскольку в большинстве случаев напряжение на них достигает необходимой величины в течение 1…3 периодов (20…60 мс).

Таблица 4. Основные технические характеристики ограничителей ICL

Параметры Наименование
ICL-16R/L ICL-28R/L
Входное напряжение, В AC 180…264 180…264
Ограничение пускового тока, А 23 48
Максимальный выходной ток (продолжительный), А 16 28
Потребляемая мощность при 264 В, Вт < 1,5 < 2
Длительность ограничения тока, мс 300 ± 50 150 ± 50
Диапазон рабочих температур, °С -30…70 -30…70

Ключевым преимуществом ограничителей ICL является возможность работы с несколькими ИП (рисунок 7). Действительно, при наличии последовательно включенного резистора максимальный ток в цепи не может превысить определенное значение даже при коротком замыкании выхода ограничителя. В этом случае максимальное количество подключаемых источников питания ограничивается максимально допустимым током контактов реле, равным 16 А для ICL-16R/L и 28 А для ICL-28R/L. Таким образом, пусковой ток в системе с использованием ограничителей тока будет превышать ток при полной нагрузке не более чем в два раза.

Рис. 7. Типовая схема включения ограничителей ICL

Рис. 7. Типовая схема включения ограничителей ICL

Еще одним преимуществом такого решения является его универсальность, поскольку проблема пусковых токов существует не только у импульсных ИП. Например, такая же проблема может возникнуть при включении мощных трансформаторов. И хоть в этом случае причина появления пускового тока имеет иную физическую природу (наличие остаточной намагниченности ферромагнитного материала магнитопровода), тем не менее, ее теоретически можно также решить с помощью ограничителей пусковых токов производства компании MEAN WELL.

Особенности самостоятельного изготовления ограничителей пусковых токов

Как и любая продукция компании MEAN WELL, ограничители пусковых токов серии ICL отличаются высоким качеством. Однако они все еще являются новинкой на рынке и их доступность некоторое время будет недостаточной для широкого использования. Тем не менее, простота метода ограничения пусковых токов позволяет изготовить такое устройство самостоятельно из компонентов, имеющихся в любом радиомагазине.

Один из вариантов такого решения показан на рисунке 8. В качестве токоограничивающих резисторов были использованы два соединенных параллельно 5-ваттных проволочных резистора R3 и R4, замыкаемые с помощью контактов реле K1. Элементы R1, R2, VD1, VD2, C1 являются простейшим стабилизированным источником питания, предназначенным для включения реле. Время срабатывания системы зависит от скорости заряда конденсатора C1 и при данных номиналах компонентов приблизительно равно 0,5 с, что вполне достаточно для заряда конденсаторов фильтров подсоединенных выпрямительных устройств. Максимальное значение пускового тока определяется сопротивлением резисторов R3 и R4. При использовании элементов с сопротивлением 47 Ом ток в момент включения системы не должен превышать 12 А во всем диапазоне рабочих напряжений.

Рис. 8. Принципиальная схема и внешний вид самостоятельно изготовленного ограничителя тока

Рис. 8. Принципиальная схема и внешний вид самостоятельно изготовленного ограничителя тока

Для надежного срабатывания реле, способного коммутировать токи более 1 А, необходимо около 0,5 Вт мощности, поэтому чем больше напряжение обмотки, тем меньше энергопотребление системы, ведь формирование напряжения для обмотки реле производится простейшей схемой на основе резистивного делителя, КПД которого катастрофически падает с уменьшением коэффициента передачи. В данной схеме было использовано стандартное реле SRD-24VDC-SL-C с обмоткой, рассчитанной на напряжение 24 В, поэтому потребляемая мощность данной схемы достаточно высока – около 4 Вт.

Для уменьшения энергопотребления можно заменить резисторы R1 и R2 на конденсатор, имеющий на частоте 50 Гц аналогичное сопротивление. Однако наилучшим решением в данной ситуации будет использование специализированных маломощных источников питания, которые не только сформируют нужное напряжение с малыми потерями, но и обеспечат работоспособность схемы в широком диапазоне входных напряжений.

Небольшое количество компонентов позволило поместить данную схему в компактном корпусе KLS24-JG4-01, рассчитанном на установку на DIN-рейку. Практические испытания схемы с пятью подключенными к выходу ИП мощностью от 50…150 Вт показали хорошее ограничение пусковых токов, проявляющееся в отсутствии срабатываний защиты от коротких замыканий, которая до этого активизировалась в среднем при каждом третьем включении.

Основным недостатком рассмотренной выше схемы является высокое энергопотребление, проявляющееся в достаточно сильном нагреве корпуса во время работы. Поэтому было решено применить более простой способ питания реле напряжением, формируемым непосредственно выпрямительным устройством (рисунок 9). Использование такого подхода позволило, во-первых, значительно упростить схему, а во-вторых, максимально уменьшить пусковой ток, ведь при таком подходе реле сработает уже после запуска источника питания, то есть, когда заряд конденсатора фильтра гарантированно закончится.

Рис. 9. Принципиальная схема и внешний вид ограничителя тока с питанием реле от выпрямительного устройства

Рис. 9. Принципиальная схема и внешний вид ограничителя тока с питанием реле от выпрямительного устройства

В новой схеме в качестве токоограничивающих резисторов были использованы два параллельно соединенных резистора сопротивлением 1 кОм и мощностью 3 Вт. При таких номиналах максимальное значение пускового тока не будет превышать 2 A. Очевидно также, что для этой схемы рабочее напряжение реле должно быть равно выходному напряжению выпрямительного устройства, в данном случае – 12 В.

Поскольку столь высокое сопротивление во входной цепи теоретически может привести к нестабильной работе блока питания, для проверки работоспособности системы была собрана экспериментальная установка на основе импульсного ИП мощностью 60 Вт (рисунок 10). Для измерения тока был использован резистивный шунт с сопротивлением 0,1 Ом, включенный последовательно с выпрямительным устройством. Напряжение сети контролировалось с помощью штатного делителя напряжения с коэффициентом передачи 1:10, встроенного в щуп цифрового осциллографа SIGLENT SDS 1072CML+.

Рис. 10. Принципиальная схема измерительной установки

Рис. 10. Принципиальная схема измерительной установки

Согласно технической документации на выпрямительное устройство, его ток в момент включения не должен превышать 45 А. Но, поскольку фактическое значение пускового тока сильно зависит от момента включения (по отношению к началу периода сети), то включить систему при максимуме напряжения сети без использования специализированного оборудования достаточно тяжело. Тем не менее, на рисунке 11 показаны осциллограммы, полученные при включении системы менее чем за 1 мс до момента достижения амплитудного напряжения сети. Как видно из результатов измерений, величина пускового тока составила приблизительно 25 А, что почти в 17 раз больше амплитудного значения тока, потребляемого при выходном токе 5 А (амплитудное значение входного тока при этом равно 1,5 А), составляющем более 80% от максимальной нагрузки (рисунок 12).

Рис. 11. Диаграммы напряжения сети (фиолетовый канал) и потребляемого тока (желтый канал) в момент включения выпрямительного устройства при отсутствии ограничителя пусковых токов

Рис. 11. Диаграммы напряжения сети (фиолетовый канал) и потребляемого тока (желтый канал) в момент включения выпрямительного устройства при отсутствии ограничителя пусковых токов

Рис. 12. Диаграммы напряжения сети (фиолетовый канал) и потребляемого тока (желтый канал) при работе выпрямительного устройства в режиме 80% мощности

Рис. 12. Диаграммы напряжения сети (фиолетовый канал) и потребляемого тока (желтый канал) при работе выпрямительного устройства в режиме 80% мощности

После подключения ограничителя пусковой ток уменьшился до нескольких ампер (рисунок 13), при этом видно, что заряд конденсатора фильтра теперь занимает значительно больше времени. Однако это не влияет на стабильность запуска системы, поскольку к моменту включения импульсного преобразователя выпрямительного устройства количества энергии в конденсаторе фильтра хватит для поддержания выходного напряжения в течение нескольких сотен миллисекунд, что вполне достаточно для включения реле.

Рис. 13. Диаграммы напряжения сети (фиолетовый канал) и потребляемого тока (желтый канал) в момент включения выпрямительного устройства с ограничителем пусковых токов

Рис. 13. Диаграммы напряжения сети (фиолетовый канал) и потребляемого тока (желтый канал) в момент включения выпрямительного устройства с ограничителем пусковых токов

Очевидно, что при таком подходе к ограничению входного тока самой сложной ситуацией для системы будет режим перегрузки по току ИП. В этом случае выходного напряжения блока питания может оказаться недостаточно для срабатывания реле, и токоограничивающие резисторы останутся включенными до момента устранения перегрузки. Однако благодаря тому, что большинство ИП имеет встроенную защиту от перегрузки по току, при срабатывании которой они переходят в прерывистый («икающий») режим работы, входной ток при этом значительно снижается (рисунок 14) и мощность, выделяемая на токоограничивающих резисторах, не достигает опасных значений. Так, после часа работы системы в режиме короткого замыкания ИП температура перегрева корпусов резисторов R1 и R2, измеренная контактным способом с помощью термопары, не превысила 60°С.

Рис. 14. Диаграммы тока, потребляемого выпрямительным устройством в режиме короткого замыкания выхода

Рис. 14. Диаграммы тока, потребляемого выпрямительным устройством в режиме короткого замыкания выхода

Несмотря на то, что увеличение сопротивления токоограничивающих резисторов позволяет полностью исключить возникновение экстратоков в момент включения, сильно увеличивать их сопротивление не нужно. При большом сопротивлении этих компонентов и возможной аварии во входной цепи выпрямительного устройства, например, при пробое входных диодов, встроенная плавкая вставка не сработает, и к токоограничивающим резисторам будет постоянно приложено все напряжение сети, что, скорее всего, приведет к их перегреву, а возможно – к возгоранию. Поэтому пусковой ток в системе должен быть, с одной стороны, не особо большим, по причинам, изложенным в начале статьи, а с другой – не особо малым, чтобы обеспечить надежную работу защит при аварии выпрямительных устройств. По этой же причине температуру корпусов токоограничивающих резисторов лучше всего контролировать термопредохранителем, разрывающим цепь при перегреве.

Как и все рассмотренные перед этим способы, схема, изображенная на рисунке 9, может ограничивать ток как одного, так и нескольких ИП. В последнем случае реле можно подключить как к одному блоку питания, так и к нескольким, объединив их, например, по схеме монтажного ИЛИ. 

Заключение

Проблема пусковых токов выпрямительных устройств не нова. Отрадно осознавать, что ведущие мировые производители источников питания начали выпускать на рынок профессиональные решения, позволяющие минимизировать значение этого параметра. При этом вполне возможно, что в ближайшем будущем наряду с традиционными ИП общего назначения появятся специализированные семейства для осветительного оборудования, в которых данная защита уже будет интегрирована, а следовательно, системы светодиодного освещения станут еще проще и надежнее.

•••

Наши информационные каналы

Товары
Наименование
ICL-16R (MW)
 
ICL-16L (MW)
 
ICL-28R (MW)
 
ICL-28L (MW)
 
LRS-50-12 (MW)
 
LRS-100-12 (MW)
 
LRS-150-24 (MW)
 
LRS-350-24 (MW)
 
HDR-15-12 (MW)
 
HDR-15-24 (MW)
 
HDR-30-24 (MW)
 
HDR-100-24 (MW)
 
RSP-100-12 (MW)
 
RSP-200-24 (MW)