№5 / 2017 / статья 9

Как выбрать оптимальные полевые транзисторы для синхронных выпрямителей

Александр Русу (г. Одесса)

Применение синхронных выпрямителей – лучший способ снижения потерь во вторичных цепях преобразователей энергии. А полевые транзисторы из линейки OptiMOS™ производства Infineon с напряжением 30…150 В отлично подходят для этой цели.

Постоянное ужесточение требований к удельной мощности и энергосбережению преобразователей электрической энергии требует увеличения эффективности всех ступеней преобразования. Основным видом потерь во вторичных цепях преобразователей с гальванической развязкой являются потери проводимости выпрямительных диодов, которые можно уменьшить, используя синхронное выпрямление (рисунок 1). Замена диодов полевыми транзисторами (MOSFET) приводит к появлению новых задач – оптимизации эффективности системы и предотвращению выбросов перенапряжения.

Принципы синхронного выпрямления

Для правильного выбора транзисторов синхронного выпрямителя необходимо четкое понимание механизма возникновения потерь. В первую очередь необходимо различать потери проводимости (статические потери), зависящие от тока нагрузки, и потери переключения (динамические потери). Потери проводимости напрямую зависят от сопротивления транзисторов в открытом состоянии RDS(on) и падения напряжения на внутренних диодах VSD. Причем увеличение тока нагрузки приводит к увеличению потерь проводимости. Для предотвращения одновременного включения транзисторов синхронного выпрямителя, приводящего к токовым перегрузкам транзисторов, необходимо наличие некоторого времени задержки, при котором один транзистор должен быть гарантированно закрыт перед открытием другого. Именно в этот промежуток времени ток протекает через внутренний диод, и в нем возникают дополнительные потери. Но, поскольку этот период мал (50…100 нс), то в большинстве случаев, когда выходное напряжение значительно больше прямого падения напряжения на внутреннем диоде, данными потерями можно пренебречь.

Рис. 1. Схемы диодного и синхронного выпрямителей

Рис. 1. Схемы диодного и синхронного выпрямителей

Динамические потери MOSFET также вносят большой вклад в общую картину. Они зависят от частоты коммутации fSW и выходного тока преобразователя IOUT. Для включения транзистора емкость затвора необходимо зарядить до величины Qg, а напряжение на затворе должно достигнуть порога переключения. Для выключения MOSFET емкость «затвор-исток» должна быть разряжена, что означает рассеивание заряда Qg на сопротивлении затвора и внутреннем сопротивлении драйвера. При существующей технологии производства потери управления для транзисторов с малым сопротивлением канала – больше, чем для высокоомных, поскольку увеличение размера кристалла приводит к увеличению заряда затвора Qg.

Другая важная часть динамических потерь связана с наличием выходной емкости Coss и зарядом обратного восстановления Qrr. При выключении транзистора заряд Qrr должен быть рассеян, а выходная емкость Coss заряжена до величины напряжения вторичной обмотки трансформатора VT. В результате этого процесса возникает импульс обратного тока, который протекает через индуктивности коммутируемой цепи, вследствие чего в выходную емкость транзистора передается энергия, приводящая к появлению на стоке транзистора импульса перенапряжения. Этот импульс запускает колебательный процесс в контуре, образованном индуктивностями проводников печатной платы и выходной емкостью транзистора Coss, который демпфируется паразитными сопротивлениями данного контура. Таким образом, энергия выключения зависит от величины емкости Coss MOSFET и, соответственно, от заряда Qoss, накопленного при заряде Coss до напряжения вторичной обмотки трансформатора. Аналогично заряду затвора Qg, заряд выходной емкости Qoss увеличивается с уменьшением сопротивления RDS(on). Таким образом, всегда можно найти баланс между потерями проводимости и потерями на переключение для достижения максимальной эффективности преобразования в целом.

В первом приближении зарядом обратного восстановления Qrr для транзисторов серии OptiMOS™ можно пренебречь, поскольку его вклад в общие потери мощности незначителен. В нашем случае зарядом Qrr считается только заряд восстановления внутреннего диода MOSFET, в то время как величина заряда Qrr, которая указывается в документации, измеряется в соответствии со стандартами JEDEC, и поэтому содержит не только заряд восстановления внутреннего диода, но и некоторые составляющие выходного заряда транзистора. К тому же, при синхронном выпрямлении реальные значения заряда обратного восстановления диода Qrr – меньше значений, указанных в документации. В ней приводятся значения для максимально допустимого тока стока транзистора при условии, что диод находился в проводящем состоянии длительное время, более 500 мкс, и при ограниченной скорости изменения тока di/dt на уровне 100 А/мкс. В реальном устройстве токи транзистора обычно не превышают трети максимально допустимого тока стока, внутренний диод находится в проводящем состоянии 20…100 нс, а скорость изменения тока di/dt достигает 800 А/мкс.

Оптимизация выбора транзисторов синхронного выпрямителя

Оптимальный выбор транзисторов синхронного выпрямителя, направленный на максимальную эффективность, заключается в поиске сбалансированного соотношения потерь проводимости и переключения. При малом токе нагрузки потери проводимости играют второстепенную роль. В этом случае потери переключения, которые приблизительно постоянны во всем диапазоне нагрузок, являются доминирующими. При большом токе нагрузки потери проводимости максимальны и поэтому вносят наибольший вклад в общие потери мощности (рисунок 2).

Рис. 2. Зависимость потерь мощности от выходного тока

Рис. 2. Зависимость потерь мощности от выходного тока

При выборе транзисторов особое внимание необходимо уделить выбору сопротивления в проводящем состоянии RDS(on). В качестве примера рассмотрим семейство транзисторов 60 В OptiMOS™, работающих при условиях, приведенных на рисунке 3. На нем видно, что отклонение сопротивления RDS(on) от точки оптимального выбора приводит к увеличению общих потерь пропорционально увеличению RDS(on). В тоже время в приведенном примере уменьшение сопротивления RDS(on) ниже 0,5 мОм приведет к существенному увеличению потерь, обусловленных увеличением выходной емкости. Более того, на рисунке 3 можно увидеть, что диапазон значений RDS(on), при которых значение потерь минимально, достаточно широк. В этом примере общие потери примерно одинаковы в диапазоне 0,75…2,8 мОм, следовательно, для данной ситуации лучше всего подходят транзисторы BSC016N06NS или BSC028N06NS. К тому же, поскольку потери остаются меньше 1 Вт в широком диапазоне (0,55…3,9 мОм), то возможен и выбор BSC039N06NS, хотя данный транзистор лучше использовать в приложениях или с меньшим током нагрузки, или с большей частотой преобразования.

Рис. 3. Зависимость потерь мощности от сопротивления RDS(on) Рис.

Рис. 3. Зависимость потерь мощности от сопротивления RDS(on)

В любом случае необходимо помнить, что график на рисунке 3 был построен для конкретных условий, и ситуация может существенно поменяться при изменении частоты преобразования (рисунок 4в, г) или тока, протекающего через транзисторы (рисунок 4а, б).

Если взять в качестве примера рисунок 4а, где ток транзистора уменьшен до 5 А, а частота преобразования осталась 175 кГц, потери переключения теперь составляют значительную часть общих потерь и оптимальным является использование транзистора BSC039N06NS. В другом случае частота преобразования уменьшена до 100 кГц при сохранении тока транзистора на уровне 15 А (рисунок 4в). В этом случае оптимальным решением является выбор транзистора BSC016N06NS, при использовании которого обеспечивается минимальный уровень потерь.

Рис. 4. Зависимость потерь мощности от сопротивления RDS(on) при различных значениях частоты пре- образования fsw и тока транзистора IMosfet

Рис. 4. Зависимость потерь мощности от сопротивления RDS(on) при различных значениях частоты преобразования fsw и тока транзистора IMosfet

Еще одной важной проблемой оптимизации синхронных выпрямителей является правильный выбор корпуса транзистора. Действительно, повысить эффективность выпрямителя можно простым путем замены корпуса ТО-220 на SuperSO8. Причиной этого является уменьшение доли сопротивления корпуса в величине RDS(on). Уменьшение сопротивления RDS(on) при сохранении выходной емкости на том же уровне приводит к уменьшению произведения FOMQoss = RDS(on) х Qoss, которое является показателем эффективности технологии MOSFET. Уменьшение FOMQoss приведет к уменьшению потерь переключения и, таким образом, увеличит КПД выпрямителя.

При каком токе необходимо оптимизировать транзисторы?

Чтобы получить высокое значение КПД синхронного выпрямителя во всем диапазоне токов нагрузки необходимо правильно выбрать ток MOSFET, воспользовавшись четырехквадрантными оптимизирующими зависимостями. Оптимизация, выполненная для максимальной нагрузки, даст высокое значение КПД при больших выходных токах. Однако в этом случае при небольшой нагрузке выпрямителя значение КПД резко уменьшится, а количество параллельно соединенных транзисторов окажется недопустимо большим. Поэтому необходимо выбрать такое значение тока транзистора, при котором КПД будет иметь относительно постоянное значение во всем диапазоне токов.

Для иллюстрации этой проблемы на рисунке 5 показаны зависимости КПД синхронного выпрямителя с выходным напряжением Vout = 12 В, напряжением вторичной обмотки трансформатора 24 В, напряжением затвора 10 В и частотой преобразования 200 кГц, рассчитанные для различных вариантов оптимизации. Если обратиться к оптимизирующим зависимостям (о методике их использования будет рассказано далее) для 40 В OptiMos BSC010N04LS (рисунок 8), то при оговоренном выше режиме работы (V=  24 В, f = 200 кГц) и токе 20 А оптимальным будет применение одного транзистора. В этом случае, в соответствии с рисунком 5, максимум КПД будет располагаться в области небольших токов нагрузки. В случае оптимизации при токе транзистора 40 А оптимальным будет применение двух транзисторов. В этом случае максимум КПД сместится в область больших токов нагрузки. Обычно сбалансированное значение КПД достигается, если оптимизация выполняется при 20…30% от максимальной мощности выпрямителя. Если выпрямитель большую часть времени функционирует при небольших нагрузках – имеет смысл уменьшить ток, при котором выполняется оптимизация, до величины 10…20% от максимального выходного тока. Если же нагрузка такова, что большую часть времени выпрямитель работает при уровне мощности более половины от максимального, оптимизацию необходимо выполнять для тока значением до 60% от максимального выходного тока. Оптимизации для 100% нагрузки следует избегать, поскольку в этом случае с уменьшением нагрузки КПД выпрямителя существенно уменьшается, а количество параллельно соединенных транзисторов значительно возрастает.

Рис. 5. Зависимость КПД от тока нагрузки при различных значениях тока оптимизации

Рис. 5. Зависимость КПД от тока нагрузки при различных значениях тока оптимизации

Выбор полевых транзисторов по четырехквадрантным оптимизирующим зависимостям для синхронного выпрямления

Для выбора транзисторов предлагаются оптимизирующие зависимости, которые позволяют легко отыскать наиболее подходящий полевой транзистор для синхронного выпрямителя с использованием всего трех параметров: напряжения вторичной обмотки трансформатора, частоты преобразования и среднего значения тока транзистора. Пример выбора транзистора показан на рисунке 6.

Рис. 6. Выбор транзистора по оптимизирующим зависимостям

Рис. 6. Выбор транзистора по оптимизирующим зависимостям

На первом этапе необходимо выбрать один из транзисторов, присутствующих на графиках. Из точки на оси Х, которая соответствует напряжению вторичной обмотки трансформатора, проводят вертикальную линию вниз до пересечения с линией, соответствующей выбранному транзистору. Из этой точки проводят горизонтальную линию влево до точки пересечения с линией, соответствующей частоте преобразования. После этого проводят вертикальную линию вверх до пересечения с линией, соответствующей выбранному току транзистора. Далее из этой точки проводят горизонтальную линию вправо до пересечения с вертикальной линией, соответствующей выбранному транзистору, по которой можно определить оптимальное число параллельно соединенных транзисторов.

Хорошим соотношением будет уровень тока в 20…30% от полной нагрузки. Оптимальным значением RDS(on) для данного случая будет точка пересечения с положительной частью оси Y. Данную процедуру можно выполнить для разных моделей транзисторов. Наименьшие потери, а следовательно, и максимальное значение КПД выпрямителя будут при использовании тех транзисторов, для которых эквивалентное сопротивление RDS(on) будет наименьшим.

Данная методика рассчитана на работу транзисторов выпрямителя в режиме оптимального переключения. В любом другом случае, например, в случае динамического включения или лавинного пробоя, приведенные зависимости будут неточными. Наилучшие результаты были получены для топологий с жесткой коммутацией. Использование данной методики для резонансных схем с режимами мягкой коммутации приведет к большим расхождениям, поскольку в данном случае динамические потери будут ниже нуля. В этом случае оптимальное значение сопротивления RDS(on) будет меньше расчетного. Обратите внимание на то, что даже при работе первичной стороны в квазирезонансном режиме, например, при использовании мостового инвертора Phase Shift ZVS, синхронный выпрямитель может работать в режиме жесткого переключения и может быть оптимизирован с использованием приведенных зависимостей.

Все оптимизирующие зависимости, приведенные в данной статье (рисунки 7…14), были построены для идеализированных полевых транзисторов. На практике результаты расчетов по идеализированным зависимостям могут отличаться от реального значения потерь. Поэтому полученные результаты необходимо рассматривать не более чем как индикатор наилучшего возможного случая или предупреждение о выборе недостаточного или избыточного количества транзисторов. Если оптимальное количество параллельно соединенных транзисторов, полученное по графикам, находится между двумя значениями, следует помнить, что выбор меньшего количества транзисторов увеличит КПД выпрямителя при меньших токах нагрузки, а большего – при больших. Кроме того, необходимо учитывать наличие снабберных цепей, включенных параллельно транзисторам, которые также могут влиять на выбор транзисторов.

Оптимизация во всем диапазоне токов нагрузки не может быть выполнена с помощью расчета при одном значении выходного тока. Для этого необходимо выполнить несколько тестовых расчетов при различных токах нагрузки, и, анализируя полученные результаты, осуществить выбор модели и количества транзисторов в соответствии с требованиями, предъявляемыми к выпрямителю.

Рис. 7. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 30 В

Рис. 7. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 30 В

Рис. 8. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 40 В

Рис. 8. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 40 В

Рис. 9. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 60 В

Рис. 9. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 60 В

Рис. 10. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 75 В

Рис. 10. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 75 В

Рис. 11. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 80 В

Рис. 11. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 80 В

Рис. 12. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 100 В

Рис. 12. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 100 В

Рис. 13. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 120 В

Рис. 13. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 120 В

Рис. 14. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 150 В

Рис. 14. Выбор транзистора по оптимизирующим зависимостям OptiMOS™ 150 В

О компании Infineon

Компания Infineon является мировым лидером по производству силовых полупроводниковых компонентов, а также занимает ведущие позиции по производству автомобильной полупроводниковой электроники и смарт-карт.  В 2015 году компания Infineon приобрела компанию International Rectifier, тем самым значительно усилив свои лидирующие позиции в области силовой электроники. Это сочетание открывает новые возможности для клиентов, так как обе компании превосходно дополняют друг друга благодаря высокому уровню ...читать далее

Наличие на складах
Наименование Наличие Цена
BSC016N06NS (INFIN) 228 982 1.3226 $ 77.59 руб. от 122 шт
BSC016N06NSATMA1 (INFIN) 200 555 1.2978 $ 76.13 руб. от 5 000 шт
BSC016N06NS/5 шт (INFIN) 0
BSC028N06NSATMA1 (INFIN) 331 1.3960 $ 81.89 руб. от 359 шт
BSC028N06NS (INFIN) 410 1.5677 $ 91.97 руб. от 250 шт
BSC028N06NS/10 pcs (INFIN) 0
BSC039N06NSATMA1 (INFIN) -10% 80 077 0.5243 $ 30.75 руб. от 1 шт
BSC039N06NS (INFIN) 6 133 0.8953 $ 52.52 руб. от 1 250 шт
BSC010N04LSATMA1 (INFIN) 48 925 1.6487 $ 96.71 руб. от 1 000 шт
BSC010N04LSIATMA1 (INFIN) 37 591 1.7977 $ 105.46 руб. от 1 000 шт